

1

CHAPTER 1

T

HE

 A

UTHENTICATION

L

ANDSCAPE

Open, Sesame!

— Scheherazade (attr.),

Ali Baba and the Forty Thieves

IN THIS CHAPTER

This chapter provides an overview of

authentication

, the problem of
verifying identities, and the major issues in making it work.

• Elements of authentication systems

• Early developments in password authentication

• Attacks via cleverness, theft, and trickery

• Authentication factors: passwords, tokens, biometrics

• Judging attack prevalence

• Summary of the chapter’s attacks and defenses

1.1 A V

ERY

 O

LD

 S

TORY

For centuries, people have relied on guards, spoken passwords, and
hard-to-forge seals to prove their identity to other people and to ver-
ify important messages. Unattended authentication by mechanical
devices is also quite old: key-operated locks date back to the ancient
Egyptians. Practical mechanisms did their job with as little human
interaction as possible.

Unattended authentication is essential with today’s com-
puter-based systems. It may be a cliché to call the Internet the
“information superhighway,” but here it captures truth: we can’t
afford to post a policeman at every cloverleaf or on the countless

2 1 .1 A VERY OLD STORY

interconnected streets and driveways. We must depend on mecha-
nized protection.

The notion of an unattended, password-controlled lock appeared
centuries ago in

Ali Baba and the Forty Thieves

, the Mideastern folk
tale. In the well-known story, the narrator Scheherazade told of a
great treasure hidden in a cave behind a stone. The password
“Open, Sesame” caused the stone to move out of the way. Guards in
cities of that era also used passwords to allow citizens through the
city gates. But the thieves’ cave didn’t need a human guard to recog-
nize faces, voices, or styles of dress. Instead, there was an unex-
plained and probably magical device that mechanically responded to
the spoken words. Most importantly, the mechanism didn’t discrim-
inate between different people speaking the words. It responded to
the words themselves, just like modern combination locks or pass-
word-protected workstations, which admit anyone knowing the
secret.

The point of Scheherazade’s tale is that magic (or mechanism)
always follows its own logic, independent of people’s wishes or
intentions. The same thing plagues us today with computer-based
authentication systems. We have a wealth of technical alternatives,
each following its own logic and falling to its own distinctive weak-
nesses. But if we understand the logic and the weaknesses of a
given method, we stand a better chance of bending technology to
fulfill our real needs.

The passwords and other authentication mechanisms used with
computers today cover a broad range of techniques and technolo-
gies. Web site designers, e-commerce planners, and other system
developers must choose from numerous products and make numer-
ous configuration decisions within each product. Systems like Win-
dows NT and Windows 2000 by themselves incorporate several
password alternatives to provide interoperability with other prod-
ucts. Some organizations need the extra security of smart cards or
authentication tokens like Safeword or SecurID. A major motivation
behind the “public key infrastructure” (or PKI) is to someday revolu-
tionize, strengthen, and simplify individual authentication. But, as
with any evolving technology, it’s hard to predict how much of its
promise it will ultimately achieve.

see Note 1.

3THE AUTHENTICAT ION LANDSCAPE

1.2 E

LEMENTS

OF

AN

 A

UTHENTICATION

 S

YSTEM

Regardless of whether an authentication system is computer based
or not, there are several elements usually present, and certain
things usually take place. First of all, we have a particular

person

 or
group of people to be authenticated. Next, we need a

distinguishing
characteristic

 that differentiates that particular person or group
from others. Third, there is a

proprietor

 who is responsible for the
system being used and relies on mechanized authentication to dis-
tinguish authorized users from other people. Fourth, we need an

authentication mechanism

to verify the presence of the distinguish-
ing characteristic. Fifth, we grant some privilege when the authenti-
cation succeeds by using an

access control mechanism

, and the
same mechanism denies the privilege if authentication fails. Table
1.1 gives examples of these elements.

For example, the person of interest to the thieves’ cave might be
Ali Baba, his brother, or whichever thief wanted the door to open.
The distinguishing characteristic was knowledge of the password,
“Open, Sesame.” The cave’s proprietors were obviously the gang of
the Forty Thieves. There was some unexplained authentication

T

ABLE

 1.1:

Examples of the Five Elements in an Authentication System

Authentication
Element

Cave of the 40
Thieves

Password
Login

 Teller
Machine

Web Server
to Client

Person, principal,
entity

Anyone who knew
the password

Authorized
user

Owner of a
bank account

Web site
owner

Distinguishing char-
acteristic, token,
authenticator

The password
“Open, Sesame”

Secret pass-
word

ATM card and
PIN

Public key
within a certif-
icate

Proprietor, system
owner, administra-
tor

The forty thieves Enterprise
owning the
system

Bank Certificate
authority

Authentication
mechanism

Magical device that
responds to the
words

Password vali-
dation soft-
ware

Card validation
software

Certificate
validation
software

Access control
mechanism

Mechanism to roll
the stone from in
front of the cave

Login process,
access con-
trols

Allows banking
transactions

Browser marks
the page
“secure”

4 1 .2 ELEMENTS OF AN AUTHENTICAT ION SYSTEM

device in the cave to identify the correct password and to ignore
incorrect ones or, presumably, general conversation (the story did
not say what would happen if a thief mentioned the password in a
conversation near the cave door; probably the stone would have
rolled out of the way). The access control mechanism moved the
stone which granted access to the cave.

A genuine example is, of course, the password-controlled login
operation we encounter in most computing environments. The per-
son of interest is an individual allowed to use the computer. The
system usually assigns the person a symbolic name or user identifi-
cation code which we will call the

user name

. For example, John Doe
is an authorized user of the system in Figure 1.1, and the proprietor
has assigned him the user name “jdoe.” The distinguishing charac-
teristic for John Doe is his secret password, “asdf.” The process
should be familiar: John gets the computer’s attention and the com-
puter’s login process prompts him for a user name and a password.
The process contains an authentication procedure that compares
the typed-in password against the password established by or for
John Doe; the procedure succeeds if the two match. The access con-
trol mechanism allows John to proceed with using the system, and
the system uses John’s user name whenever it makes access control
decisions on protected resources.

Login
Process

Authentication
Mechanism

Distinguishing
Characteristic:
knowledge of a
secret password

Proprietor,
or an administrator
working on the pro-

prietor s behalf

Access Control
Mechanism

login: jdoe
password: asdf

The Person:
John Doe

Computer
System

Resources

FIGURE 1.1: Five elements of authentication. These elements are: the person, the distinguishing
characteristic, the proprietor, the authentication mechanism, and the access control mechanism.

5THE AUTHENTICAT ION LANDSCAPE

When looking at computer security problems, we always need to
distinguish what we want to do from what we really do. The former
question, “what we want,” is usually spoken of as

security objectives

.
The gang of the Forty Thieves, for example, had the objective of pro-
tecting their loot from theft. They relied on a

security mechanism

,
the cave’s door, to do this. In a computing system, the proprietor
has the objective of granting access only to authorized users. In Fig-
ure 1.1, the proprietor relies on the operating system, and its pass-
word controlled login, to achieve this objective.

As a practical matter, there’s always a gap between what we want
and what really happens. A lock lets anyone in, as long as they have
a copy of the right key. The lock does not keep the wrong people out
unless we can prevent the wrong people from having a key. That can
be hard to do, especially if the people we lock out really want to get
past that door. Moreover, we can’t always afford to put separate
locks on everything. Often there’s just a big lock on the outer door,
and we have to trust the people we’ve allowed inside.

Computer systems usually provide authentication and access
control as clearly separate things. While it sometimes makes sense
in the mechanical world to distinguish between the bolt that holds
the door shut and the lock that controls the bolt, such things are
often built into a single mechanism. On computers, the authentica-
tion process establishes the correct user name to use, and access
control happens separately. Computer systems generally control
access by comparing the person’s user name with the access rules
tied to a particular file or other resource. If the rules grant access by
the person with that user name, then the person gets to use the
resource.

The Forty Thieves intended their cave to grant access only to
members of the band, but the mechanism couldn’t prevent others
from using the password. This problem infects both authentication
and access control. In authentication, we can identify the people we
want to allow to use a system, but the mechanisms aren’t perfect.
There’s always a way for an unauthorized person to masquerade as
a legitimate user.

We have a similar problem in access control: we want to authorize
certain people to use the system, and we implement those desires by
setting up the access control system to allow this. In an ideal secu-

6 1 .2 ELEMENTS OF AN AUTHENTICAT ION SYSTEM

rity engineering world, we grant access using the principle of

 “

least
privilege,” in which people have just as many permissions and privi-
leges as they need: no more, no less. But in the real world, the
access control system can’t give people exactly the privileges they
need: we must either give them too many or omit a few that they
really need. In a practical world we usually extend a measure of
trust to authorized users so that they have the tools to get their
work done, even though this technically gives them permission to do
things they shouldn’t be doing.

Access control can be very complex, even without trying to achieve
least privilege. Modern computing systems provide a broad range of
access control policies and mechanisms. Even the access control
mechanisms provided by relatively common systems like Unix, Win-
dows NT, or Windows 2000 allow users and administrators to estab-
lish very complicated sets of rules for granting or denying the use of
various computer resources. However, many organizations take the
relatively simple approach of tying access control and authentica-
tion together, so that authenticated users have only a few broad
access restrictions.

Although the problem of authenticating people poses a real chal-
lenge to computer systems, they aren’t the only entities we need to
authenticate. We also need to authenticate unattended computer
systems like Web servers, especially when we ask them to perform
an expensive service. Unlike user authentication, there isn’t really a
person standing at the server for us to authenticate. Instead, we
want to ensure that we speak to the right piece of equipment under
the control of the right people or enterprise. We don’t want to order
boots from a computer claiming to be “L. L. Bean” unless we will
receive the boots. When we authenticate L. L. Bean’s server, we need
confidence that its distinguishing characteristic is managed and
controlled by the L. L. Bean enterprise. Usually, the browser warns
its operator if it can’t authenticate the site, and leaves the access
control decision to the operator (“Should I still order boots, even
though this site doesn’t really seem to be L. L. Bean? I don’t think
so!”). In a sense, the process turns the automatic authentication
function upside-down, but the underlying concepts are still the
same.

7THE AUTHENTICAT ION LANDSCAPE

REVISED ATTACKS AND REVISED DEFENSES

Today’s authentication systems evolved from decades of attacks,
many of them successful. Starting with password systems in the
early days of timesharing, authentication systems have been under
constant attack. The earliest attacks were from members of the local
user community protesting against the notion of authentication and
access control. Early success at stealing password files led to a
defensive measure called

password hashing

. This led to attempts to
intercept (“sniff”) passwords, which in turn led to other defensive
measures. Figure 1.2 illustrates the general progression of increas-
ingly sophisticated defenses in response to increasingly sophisti-
cated attacks. While the figure doesn’t represent an accurate
historical time line, it accurately captures the dynamics of an ongo-
ing competition between proprietors and attackers. Later sections of
the book describe these attacks and defenses in detail.

Masquerade

Password File Theft

Keystroke Sniffing

Network Sniffing

DefenseAttack

Passwords

Hashed Passwords

Memory Protection

One-Time Passwords

??????

FIGURE 1.2: Attacks and defenses evolve in response to each other. As attacks develop, defenses
develop in response. Newer attacks evolve to circumvent the new defenses. The examples shown
here tell only the beginning of the story.

8 1 .2 ELEMENTS OF AN AUTHENTICAT ION SYSTEM

Several of these attacks appear in the next section on the evolu-
tion of passwords in timesharing systems. Each attack description
is marked with a numbered “bomb” icon in the right margin, shown
here. The attack’s number begins with “A-” and is keyed to the sum-
mary of attacks at the end of the chapter. The “uniformed guard”
icon in the right margin indicates the description of a defense, usu-
ally against a recently described attack. Again, the defense’s num-
ber is keyed to a summary of defenses at the end of the chapter. As
suggested by the figure, the bombs and guards tend to alternate
throughout the book.

SECURITY STRATEGIES

An important question to ask about any defensive measure is
whether or not it is truly necessary in a given situation. Although
this question often hinges on technical questions (i.e., does the
defense do its job in the particular situation?), it also hinges on
questions of organizational policy and the motivation behind its
security activities. There are three general policy rationales to justify
security measures:

• Standards of due care

This is a legalistic concept. Businesses are legally obligated to
install well-known safety measures to protect against
well-known risks. Court cases have found businesses negligent
for failing to do so in other industries, although there are as yet
no such precedents involving information security. However,
some information security measures are so common and so well
known that they are obvious candidates for representing stan-
dards of due care. Anything noted in this book as an

 essential
defense

should be considered a minimum standard for due care
and should always be present.

• Risk analysis

This approach is based on a cost/benefit trade-off. A business
determines that it should install security measures (at a particu-
lar cost) by estimating the losses it might incur from likely
attacks. This computation is often called

risk analysis

, and the
U.S. government published a standard describing the process
(the standard was withdrawn in 1995). Because of management

 A-n

D-n

see Note 2.

9THE AUTHENTICAT ION LANDSCAPE

and budgetary inertia, enterprises rarely perform such assess-
ments until after a significant loss occurs. Occasionally, an
enterprise learns from the mistakes of its peers and installs a
defense before they themselves are attacked.

• Exceed industry practices

In this approach, a business tries to avoid attack by posing a
slightly more challenging target than its neighbors. For example,
most banks use conventional passwords to protect all on-line
transactions, even for large corporate customers. A bank can
deter certain types of fraud from large accounts by adopting
one-time passwords. In theory, this should encourage attackers
to turn their attention to other banks, since weaker security
measures are easier to overcome.

In some regions this is called the “bear chase” strategy, based
on an old adage: when a bear chases your group of hunters, you
yourself don’t have to outrun the bear, you only have to outrun
the slowest hunter. In practice, some companies do this after a
peer suffers a serious loss: they install a defense against the
same type of attack before they suffer loss themselves.

The best balance for most enterprises probably combines these
approaches. By meeting standards of due care the enterprise can
deter claims of negligence. By implementing industry practices the
enterprise avoids drawing attacks by being perceived as an easy tar-
get. By exceeding expectations, the enterprise poses an unpredict-
able target for potential attackers. Even if the enterprise can’t afford
to do a full cost/benefit risk analysis, there are often a few obviously
risky areas where improved security pays for itself.

Today, the right authentication choices for a particular enterprise
or application depend on how people use the systems in question,
how the systems are built, and what types of attacks they expect. We
explore those choices by looking at how well different authentication
systems have worked over the years and what problems persist
today. The authentication capabilities of today’s commercial sys-
tems, and the promise of tomorrow’s evolving systems, all stand
upon our past successes and failures.

see Note 3.

10 1 .3 AUTHENTICAT ION IN T IMESHARING SYSTEMS

1.3 A

UTHENTICATION

IN

 T

IMESHARING

 S

YSTEMS

We start with a look at timesharing systems because they have a lot
in common with modern server systems and because they hold the
genesis of modern password systems. Just as cheap locks remain
popular for desks and cabinets, passwords will always play some
role in computer-based authentication. Today, they are wildly popu-
lar on Internet Web and e-commerce sites. While password security
isn’t foolproof, modern systems reflect many lessons learned from
the days of timesharing systems.

In the earliest days of computers, the computer itself didn’t have
to handle access control and authentication. People either worked
with the computer directly (if they could unlock the computer room
door) or they submitted computer programs to other people (com-
puter operators) to run the programs on their behalf. This changed
in the 1960s with the advent of timesharing systems, which were
the first interactive “server” systems that provided services to lots of
different, noninterchangeable people simultaneously.

The Compatible Time Sharing System (CTSS) at the Massachu-
setts Institute of Technology (MIT) was arguably the first successful
timesharing system. Its designers, notably Fernando J. Corbató,
envisioned a system that handled a large and varied community
with hundreds of users. Under such circumstances, Corbató saw
the need for some degree of privacy and separation between differ-
ent people’s work. Moreover, computers back then were astronomi-
cally expensive by today’s standards: a single second of borrowed
CPU time could cost $100, and often cost more.

To provide the modest level of security Corbató thought sufficient
for an academic environment, he proposed what seemed to him an
obvious solution. Students generally stored personal items in metal
lockers secured with combination locks: it was a simple matter to
provide a similar, memorized “lock” for timesharing users. In 1963,
the feature was added to CTSS. From then on, people had to type a
memorized “private code” in addition to the user name that told
CTSS how to find their personal files.

Today, of course, we refer to Corbató’s private code as a

pass-
word

. Figure 1.3 illustrates the basic mechanism. The computer
asks the person to type in a user name and a password. The com-

see Note 4.

11THE AUTHENTICAT ION LANDSCAPE

puter searches the system’s password file for an entry matching the
user name. If the password in that entry matches the password just
typed, then the login succeeds.

Some early computer users, particularly among the technically
sophisticated ones called “hackers,” did not like the notion of user
names and passwords. They might have tolerated the restrictions of
locked doors or computer operators, but the password mechanism
was different. It took power away from them and put the computer
itself in charge. This role reversal unsettled some and outraged oth-
ers.

PASSWORDS UNDER ATTACK

A battle of wits ensued. Programmers who missed the absolute con-
trol they had over the computer would probe the timesharing soft-
ware, and the password mechanism in particular, looking for flaws
that would give them back their lost power. The programmers
responsible for the timesharing system would examine their own
work to try to stay one step ahead.

Sometimes the timesharing programmers did stay ahead. Across
the Charles River from CTSS, at Boston University’s Remote Access
Computing System (RAX), a timesharing programmer was looking

John Doe types
his user name
and password

User name and
password

stored in RAM

Inside the Timesharing System

Password file on
the hard drive

jdoe asdf

Password Checking
Procedure

Keyboard Input
Procedure

Pass-
word

User
name
jdoe
croe
tdore

asdf
egg
xyzzy

FIGURE 1.3: Basic password checking on a timesharing system. John Doe’s user name and pass-
word are read into main memory. The user name is used to look up the password in the system’s
password file. The typed-in password must match the copy stored in the system password file,
otherwise the procedure fails.

see Note 5.

12 1 .3 AUTHENTICAT ION IN T IMESHARING SYSTEMS

over the program that checked a typed password (Figure 1.4). The
program was unusually complicated because programmers had
revised it several times to allow backspacing and other line editing
functions to correct password typing errors. Suddenly the program-
mer realized that a peculiar sequence of backspace, tab, and line
delete characters would cause the program to log the person on
without checking the password at all. He managed to correct the
problem before anyone else found out about the problem and tried
to use it.

Other times, the hackers got the upper hand. Back at CTSS,
members of the local hacking community found that the weak point
in the password system was often the password file itself. The CTSS
programming staff tried to build the system so that users could not
retrieve the password file, since the file listed the names and pass-
words of all CTSS users. According to legend, a hacker would occa-
sionally manage to extract a copy of the password file from its
secluded location, print it out, and post the file on a nearby bulletin
board for all to see.

The most notorious occasion, however, was blamed on a flaw in
CTSS itself. One afternoon, an administrator was editing the pass-
word file at the same time another administrator was editing the
daily message, which was automatically displayed whenever a user
logged in. Inside CTSS, the editor program confused the temporary
file containing the daily message with the temporary file containing
the passwords. Whenever someone logged in, the system automati-

A-1

FIGURE 1.4: Logging on a timesharing system. The timesharing system printed the first line to
identify itself. The user typed the line starting with a slash to identify himself. The system
asked for the password and overprinted several characters in a row so that other users could
not read the typed password. This is called password blinding. The remaining lines were typed
by the RAX timesharing system after the login succeeded.

A-2

13THE AUTHENTICAT ION LANDSCAPE

cally displayed the password file to them. Naturally, the problem
emerged late on a Friday afternoon and went unnoticed until after
the administrators left for the weekend. It persisted until a thought-
ful user invoked a hardware fault that crashed the computer.

In these early days, many timesharing programmers treated bug
fixing as their principal defense against such attacks. While some
considered passwords a practical but limited security technique,
others really believed they could provide foolproof authentication,
especially given the physical arrangement of typical timesharing
systems (Figure 1.5). Any weaknesses were caused by fixable soft-
ware flaws, not by fundamental weaknesses in the technique itself.
This attitude hinged on two assumptions: first, the programmers
believed they could identify and eliminate most, if not all, of the
security flaws in the system; and second, they believed the system
could reliably prevent users from reading the password file.

Security experts today would dispute both assumptions. By the
1960s, computing systems had become too complex to ever be bug-

see Note 6.

Outsiders

Premises of the
organization running

the timesharing system

Locked Computer Room

Computer
operators and
administratorsInsiders and

authorized users

FIGURE 1.5: Physical arrangement of a timesharing system. All equipment connected to the earli-
est timesharing systems resided within the physical premises of the organization that ran the
system. The computer itself was kept inside a locked computer room, following the older tradition
of batch processing sites.

14 1 .3 AUTHENTICAT ION IN T IMESHARING SYSTEMS

free. Large-scale software design was in its infancy; the RAX line
editing problem might not happen today because the particular
problem could be “designed out” of the password handling proce-
dures. The same is true for the problem underlying the switched
files on CTSS.

But these problems were replaced by other, unexpected ones. In
practice it has proven almost impossible to unconditionally protect a
file from unauthorized reading. In a classic attack, a user privileged
to see a protected file, like the password file, could be tricked into
running a program that secretly copied the file to an easy-to-reach
location. That style of attack was named the Trojan horse. If any
program on the system could read a secret file, then attackers could
usually find a way for other programs to do the same thing.

HASHED PASSWORDS

In 1967, Cambridge University started running their Titan time-
sharing system on a continuous basis in order to provide a reliable,
full-time computing service to the university community. Even in
1967, people knew it was essential to make back-up copies of files
to protect against disasters. But these back-up tapes posed a secu-
rity dilemma, since they held copies of Titan’s password file.

One evening, Roger Needham was sharing a few pints with
another Titan developer, Mike Guy, and discussing the vulnerability
of password files stored on back-up tapes. They struck on the
notion of encrypting the passwords using a “one-way cipher” that
would disguise the passwords in an irreversible way. The procedure
converted a text password into an undecipherable series of bits that
attackers couldn’t easily convert back into the password’s text. Mike
coded up the one-way function and they installed the revised logon
mechanism.

One-way functions are depressingly common in real life: it takes
moments to injure or break something, but it can take hours or
weeks to make it whole again, or stacks of money to replace it with a
new copy. Automobile accidents provide an extreme case: it takes a
lot of time, money, and material to build a new car, but it takes only
a moment to “total” that car in a crash. Mathematics provides simi-
lar functions: we can easily combine numbers in various ways, but

D-1

A-3

see Note 7.

D-2

see Note 8.

15THE AUTHENTICAT ION LANDSCAPE

it might be difficult or impossible to figure out what numbers we
started with.

The function that Guy and Needham installed in Titan is today
called a one-way hash. Figure 1.6 shows how we use it with pass-
words. When John Doe logs on, he types his user name and pass-
word as usual, and they’re read into RAM. Next, the system applies
the one-way hash procedure to his password. Then the system
extract’s John’s entry from the password file on the system’s hard
drive. The password entry contains a copy of John’s password as it
appears after applying the one-way hash procedure. If John typed
the right password, the hashed copy should match the copy in the
password file.

The one-way hash thwarts the objective of stealing the password
file from the back-up tape (or from anywhere else), since attackers
can’t retrieve users’ passwords simply by looking at the stolen pass-
word file. The technique is still used today: every modern server sys-
tem stores passwords in hashed form. Password hashing has
become an essential defense in any system that uses passwords.

A good one-way hash function has two properties. First, the func-
tion must compute a result (the hash) that depends on all of the
input data. The hash result should be different, and often wildly dif-
ferent, whenever we make minor changes to its input. Second, there

jdoe
kroe
tdore

ZxeiF3dekUw
14mo31bamRY
Z20Er7LYM8I

Hashed
password

User
name

Keyboard Input
Procedure

User name and pass-
word stored in RAM

jdoe asdf

User name and hashed
password stored in RAM

jdoe ZxeiF3dekUw

One-way Hash
Procedure

Password Checking
Procedure

FIGURE 1.6: Checking a hashed password. John Doe’s user name and password are read into
main memory. A one-way hash procedure transforms the password into an undecipherable mass
of bits. The password checking procedure compares the hashed version of the typed-in password
against the hashed password stored with John’s user name in the password file.

16 1 .3 AUTHENTICAT ION IN T IMESHARING SYSTEMS

must be no practical way to convert the hash result back into the
original data. Since the function accepts an arbitrarily large amount
of input data and yields a fixed amount of output, it’s going to be
possible to generate the same output to two different hash results.
Even so, there should be no easy way to find the input data that
yields a particular hash result.

In fact, there should be no way to produce a particular result from
a one-way hash function except by trying all possible input values
until the desired hash result appears. Encryption procedures have a
similar property: there should be no simple way to deduce the origi-
nal plaintext data from the encrypted data unless one knows what
encryption key was used (we will take a closer look at encryption in
Section 5.3). However, encryption procedures are designed to be
reversible, and that’s why they use a key. We don’t need to reverse
the password hashing and, in fact, the passwords are safer that
way.

A system that uses hashed passwords must perform the hash
whenever someone enters a password into the system. First, the
system hashes the initial password assigned to the user before stor-
ing it in the password file. Then every procedure on the system that
collects a password from the user must hash it before doing any-
thing further. The login procedure hashes the password before com-
paring it against the password file. The password changing
procedure hashes the old password to authenticate the user before
allowing the password to change, and then hashes the new pass-
word before storing it in the password file.

Many timesharing designers adopted password hashing over the
next several years. Developers at MIT used the technique in the
ambitious follow-on system to CTSS known as Multics, the “Multi-
plexed Information and Computing Service.” However, the Multics
experience illustrated the importance of using a good hash function.
In the early 1970s, the U.S. Air Force began “Project ZARF,” which
probed the security of the early Multics system. The Air Force team
quickly penetrated Multics file protection and stole a copy of the
password file. After examining the hash function it used, they found
a way to invert it. At a subsequent meeting with the Multics develop-
ers, the ZARF team presented a slip of paper to the author of the
password software, and he found his password written on it. The

17THE AUTHENTICAT ION LANDSCAPE

security problems were largely cleared up in subsequent versions of
Multics and, in time, it developed one of the best reputations in the
community for operating system security.

1.4 ATTACKING THE SECRET

Clearly, passwords will not work if people can steal them directly
from the authentication system. But this isn’t the only way of
retrieving passwords. Attackers can also exploit the fact that most
people do a bad job of creating and keeping secrets. This opens the
door for guessing attacks and social engineering.

GUESSING ATTACKS

Although technically savvy attackers might go after a password file,
other attackers might take a simpler approach: they exploit human
nature to try to guess what passwords people use. In a typical case,
the attacker develops a list of possible passwords and makes suc-
cessive attempts to log on using the different passwords. We refer to
this general strategy as a trial-and-error attack. Uninspired attack-
ers might try every legal password in hopes of hitting the victim’s
password soon. Cleverer attackers construct a list of likely pass-
words, like the victim’s name, the victim’s spouse’s name, the vic-
tim’s kids’ names, and so on.

Guessing attacks can succeed if people are careless about pass-
word selection and if trial-and-error attacks proceed without detec-
tion. The first defense against such attacks is to keep an audit trail
of attempts to log on to the system. An audit trail is a record of sig-
nificant events within the system and is a common feature in mod-
ern computing systems. Auditing in Unix is provided by the syslog
facility, and both Windows NT and Windows 2000 provide similar
features. All computing systems that meet U.S. government security
requirements (traditionally defined by the Trusted Computer System
Evaluation Criteria, or TCSEC) must provide an auditing mecha-
nism. Typically, an audit system will record the date, time, user
name, and specific details associated with each audited event.

Unfortunately, detailed audit records can actually cause problems
with password mechanisms. In most cases, a good audit mechanism
will record enough information so that someone reviewing the audit

see Note 9.

A-4

D-3

see Note 10.

18 1 .4 ATTACKING THE SECRET

later can reconstruct what happened in great detail, even to the
point of understanding the types of mistakes users have made.
Clearly, however, audit records about password authentication
should never include the typed password, whether the password
was correct or not. If a potential attacker reviewed the audit log,
misspelled passwords would clearly provide strong hints as to the
actual password.

Even basic audit records can unintentionally leak passwords
when they record the user name. Occasionally, when people
respond to a prompt to log on, they enter the password when they
should enter the user name. For example, imagine what would hap-
pen in Figure 1.1 if John mistyped his user name and/or password
a couple of times in a row. If he types the return or enter key too
many times, he may find himself typing his user name into the
password prompt and his password into a subsequent user name
prompt. If the system generates an audit record of this mistake, the
record will contain his password. Then an attacker can retrieve
John’s password by reviewing the audit log.

The typical defense against this is to treat password auditing as a
special case. While the audit software normally attempts to record
the user name associated with an event, we must admit that we
really don’t know what user name to associate with logging on until
the operation has succeeded. We achieve better security if we focus
on trying to detect guessing attacks instead of burying the password
attempts in audit records. A typical strategy, used by systems rang-
ing from RAX to Windows 2000, is to keep a separate count of
unsuccessful password attempts for each user name. RAX would
report unsuccessful password attempts to the system operator (a
full-time employee, since RAX ran on a traditional IBM mainframe)
and also report the number of bad password attempts each time the
user successfully logged on. Windows 2000 provides a mechanism
to explicitly limit password guessing: Windows will “lock out” an
account and not accept any attempts to log on following an exces-
sive number of unsuccessful attempts. The threshold is established
by an administrator. Unfortunately, this lockout mechanism has a
negative impact on usability as discussed in Chapter 6.

A-5

D-4

19THE AUTHENTICAT ION LANDSCAPE

SOCIAL ENGINEERING

Some attackers don’t even bother with password guessing; they sim-
ply ask for the password. This remains the biggest problem with
passwords: there is no way to prevent someone’s sharing secret
information with someone else. Often, a clever attacker can trick
someone into sharing a secret password, saving the attacker the
trouble of performing a technical attack on the target system. Such
trickery is usually called a social engineering attack.

The typical attack has been summarized best by Jerry Neal
Schneider, one of the earliest computer criminals on record, who
went into the computer security business after being released from
jail. When interviewed in 1974, Schneider declared that he could
break into any timesharing system in existence. He demonstrated
this by cajoling a system operator into giving him a password. When
the observer objected that Schneider hadn’t “really” broken into the
system, Schneider replied, “Why should I go to all the work of trying
to technically penetrate a computer when it is so easy to con my way
in through the timesharing service personnel?”

Another story, recounted by Katie Hafner and John Markoff,
described a “cheerful technician” who called up a company, claimed
to be the service representative for their computer vendor, and
asked if they were having performance problems. Of course, just
about everyone who owns a computer is convinced that it is not
working as hard as it should, so the company was happy to give the
technician a login and password so he could “fix” the problem. At
some point, however, a site administrator found something suspi-
cious. He called the vendor, only to find that no such “cheerful tech-
nician” worked there.

Fortunately, most modern systems resist this attack because they
use password hashing. Operators, administrators, and help desk
people can’t possibly reveal passwords because the password file
contains only the hash values, not the password text. The remaining
risk is the handling of lost passwords: an attacker could claim to be
a legitimate user with a lost password. Then the attacker can talk
the help desk into changing a victim’s password and disclosing the
new one to the attacker. The only way to protect against that is by
restricting the password change procedure. Some sites might simply
refuse to change users’ passwords remotely, but instead require

A-6

see Note 11.

see Note 12.

D-5

20 1 .4 ATTACKING THE SECRET

that users arrange to replace lost passwords in person. Other sites
might accept remote requests to change passwords, but then deliver
the new password via a different (and hopefully safer) path that
should reach the legitimate user instead of an attacker.

Of course, attackers can still social engineer a password without
battling the help desk. One way is to approach individual users and
trick them out of their passwords. For example, the attacker could
call John and make a speech of the following sort:

Mr. Doe, my security assessment has revealed that the symmet-
ric bi-quinary azimuth of your datasets has been corrupted. You
must log off immediately to prevent damage to your differential
b-tree entries. I need to log on from your precise execution con-
text in order to verify the longitudinal redundancy of your i-
nodes. Please supply me with your most recent login name and
password so I can prevent the irretrievable loss of your files.

While many computer users might recognize such a speech as pure
drivel, others will be chanting their password before the attacker
has run out of breath. Telephone fraudsters have used similar
speeches for years to trick people out of credit card numbers. The
successful attacker simply needs to convince the victim that disas-
ter is imminent and the attacker can prevent it, once the victim
divulges the secret.

The best defense against such an attack is to establish a policy of
never, never sharing passwords with anyone, including administra-
tors. Otherwise, an attacker can probably trick a gullible person into
revealing a password simply by twisting the policy to make it sound
like a legitimate request. Modern server systems should never
require users to share their passwords with administrators. If
administrators need access to something, they can generally do it
from an administrative role.

A different attack yields a similar result by turning the tables. In
April 1991, several Internet sites reported that their users received
the following e-mail message, or variants thereof:

D-6

21THE AUTHENTICAT ION LANDSCAPE

To: [adddress list suppressed]

From: root

Subject: Security Alert

This is the system administration:

 Because of security faults, we request that you change

your password to “systest001”. This change is MANDATORY

and should be done IMMEDIATLY. You can make this change

by typing “passwd” at the shell prompt. Then, follow the

directions from there on.

 Again, this change should be done IMMEDIATLY. We will

inform you when to change your password back to normal,

which should not be longer than ten minutes.

 Thank you for your cooperation,

 The system administration (root)

The message was, again, complete nonsense. The message took
advantage of the ease with which attackers can forge Internet e-mail
addresses in order to trick people into changing their passwords.
Naturally, the attackers would simply wait for people to change their
passwords, and somehow never get around to sending a message
telling them to change their passwords back.

In a truly extreme case, an attacker might go after the victim
directly and use threats or physical harm to extract a password or a
similar secret. Indulging in black humor, cryptographers often refer
to this as rubber hose cryptanalysis, since the secret could be an
encryption key as well as a computer password.

One approach to reduce the risk of such attacks, particularly
when the victim and proprietor are both trying to defend against the
attack, is to implement a duress signal in the authentication mecha-
nism. The signal is similar to the silent alarm a teller might activate
during a bank robbery. In an authentication mechanism, the victim
sends the signal via a seemingly legitimate variant of the conven-
tional login procedure. For example, a person could have two pass-

see Note 13.

A-7

A-8

D-7

22 1 .4 ATTACKING THE SECRET

words, one to indicate a legitimate login operation and a separate
one to use when forced.

A duress signal, however, is only worthwhile if the victim is going
to use it. Victims may be too traumatized to remember the duress
signal, particularly if they’ve had no practice using it. Moreover,
bank tellers use silent alarms when they believe it will increase their
chances of survival. Few victims use a duress signal simply to pro-
tect the proprietor; they are more likely to use it if the signal will
summon help but won’t put them in greater danger.

In his role working with agents sent behind enemy lines during
World War II, Leo Marks became very skeptical of the value of duress
signals in real-world applications. In many cases, the agents
appeared to have revealed all of their operating procedures to their
captors, including signals for both routine and duress messages.
Moreover, duress signals were rarely recognized as such, and the
headquarters in Britain often interpreted them as erroneous trans-
missions.

A victim has to know exactly how the duress signal will be han-
dled in order to have confidence in its value. At a minimum, a com-
puter-based duress signal should alert the system’s proprietor that
a member of the user population is in serious trouble. The computer
system itself should also take some action to minimize damage from
the attack. However, victims are unlikely to use a duress signal if it
simply disables their computer account, since that would clearly
announce to the attacker that a duress signal was used.

A more promising approach is for the duress signal to cause sub-
tle but important changes in the victim’s capabilities as a system
user. The attackers should feel that they have gained access to the
victim’s resources while really being prevented from doing serious
harm to the system. Some sites use a similar approach for handling
remote intrusions: the attackers are diverted to a special system
called a honey pot. To the attackers, the honey pot looks like an
attractive system to attack, when in fact its resources are all a sham
to divert attackers’ interest away from the really important systems.
The honey pot is supposed to keep the attackers connected to the
system while the proprietor’s investigators, and possibly law
enforcement, try to track them down. This approach could also be
applied to duress signals: the signal would connect the victim to a

see Note 14.

D-8

23THE AUTHENTICAT ION LANDSCAPE

honey pot, giving the attackers the illusion of penetrating the system
without actually placing critical resources at risk.

1.5 SNIFFING ATTACKS

In password sniffing, the attacker tries to intercept a copy of the
secret password as it travels from its owner to the authentication
mechanism. Like guessing attacks, sniffing attacks start off with rel-
atively trivial, low-tech mechanisms. But over the years, attackers
have developed numerous high-tech approaches to sniffing. Risks
from sniffing place a limit on all password systems: the more the
password must travel around, the more opportunity attackers have
to sniff it.

One type of sniffing starts right at a person’s elbow: a nearby
attacker can look over a person’s shoulder and watch him type his
password. This is called shoulder surfing. Modern systems either
don’t echo the password or they use a variant of the password blind-
ing shown in Figure 1.4 to reduce this risk. Some systems go so far
as to echo a different number of blinded characters than the actual
number of characters typed. Despite these techniques, it is some-
times possible to watch the keystrokes themselves. Passwords are
vulnerable to even more sniffing as they travel from the keyboard to
the authentication mechanism.

SNIFFING IN SOFTWARE

Figure 1.7 shows a classic sniffing attack associated with timeshar-
ing systems, like the RAX system. When people logged in, the sys-
tem copied the user name and password into a special area of RAM
called the keyboard input buffer. The password checking procedure
compared the data in the input buffer against the password stored
on the RAX hard drive and logged the user on if the password
matched. Meanwhile, however, another user on the RAX system
could run a “sniffer” program that copied information out of the key-
board input buffer as people typed. The attacker watched the typed
information especially closely when people logged on, since both the
user name and the password would promptly show up in the input
buffer.

A-9

D-9

A-10

24 1 .5 SN IF F ING ATTACKS

Although the RAX system at the time did not implement any form
of password hashing or encryption, such a mechanism would not
have protected against this attack. The keyboard input procedure
had to read the entire password into RAM without hashing it first.
RAX ran on an IBM mainframe (the IBM 360 family) and the IBM
computer hardware put restrictions on how data was exchanged
with peripheral devices like keyboards. In particular, the keyboard
input procedure was written as a “channel program” that could only
read a full line of text at a time from a keyboard. Whenever a user
typed a password, the channel program had to read the entire line of
text containing the password directly into RAM. There was no way
for the RAX software to disguise the password before it was stored in
RAM in a sniffable form.

Instead, the attack was blocked by changing the RAX system to
restrict use of the keyboard input buffer. The IBM mainframe
included memory protection features that RAX already used to keep
user programs from accidentally writing information into other peo-
ple’s keyboard input buffers or from damaging other system data in
RAM. The software was changed so that only the RAX system soft-
ware itself was allowed to see the contents of people’s keyboard
input buffers. When the attacker’s sniffer program attempted to

John Doe types
his user name
and password

Attacker "sniffs"
John’s password

Inside the Timesharing System

User name and password
stored in RAM - the
keyboard input bufferPassword Sniffing

Procedure

Keyboard Input
Procedure

jdoe asdf

Password Checking
ProcedureKeyboard Input

Procedure

FIGURE 1.7: Password sniffing on a timesharing system. John Doe’s user name and password are
read into RAM. The attacker runs a “sniffing” program that retrieves passwords from the RAM
location where the keyboard input procedure reads them in. Password hashing does not protect
against this attack, since the password must always arrive from the keyboard input procedure in
plaintext form.

D-10

25THE AUTHENTICAT ION LANDSCAPE

read data from someone’s buffer, the mainframe hardware blocked
the attempt, generated a signal, and RAX aborted the sniffer pro-
gram.

Modern systems can be vulnerable to the same threat and usually
solve it the same way. The hardware protections provided on classic
IBM mainframes are standard equipment on state-of-the-art micro-
processors like the PowerPC and the Pentium. Sophisticated operat-
ing systems like Unix, Mac OS X, Windows NT, and Windows 2000
protect keyboard input buffers from sniffing.

Unfortunately, traditional desktop systems like Windows 95 or 98,
and single-user Macintosh systems, rarely make use of hardware
protection mechanisms. Sniffers designed for single-user systems
usually save the password information in a file or transmit it across
a network to another computer. Sniffer programs targeting those
systems are common features in collections of hacker tools.
Well-known sniffers in the Windows environment include “keycopy,”
“playback,” and “keytrap.” Sniffer software poses a very real threat
in academic and educational settings where roomfuls of personal
workstations are shared among many students and occasionally
with administrators.

Not all sniffer problems are hacker based. In an attempt to pre-
vent computer misuse by employees, several organizations use key-
stroke monitor software. This software works almost exactly like a
sniffer except that it collects every keystroke. This allows managers
to review employee activities and identify employees that indulge in
personal or recreational activities on company time or equipment.
Unfortunately, any employee that looks at the keystroke monitor
logs will be able to retrieve passwords of monitored employees. This
makes the logs even more sensitive than system password files,
since modern password files are usually hashed. Keystroke monitor-
ing poses a dilemma wherever passwords are used, since managers
must choose between monitoring and the reliable authentication of
employees.

Just as timesharing and other forms of distributed computing
brought the need for authentication and passwords, it also pro-
duced some new threats as computing became even more distrib-
uted. As connections became more widespread and systems were
used for more and more important tasks, sites had to contend with

see Note 15.

26 1 .5 SN IF F ING ATTACKS

sniffing threats on their communications lines. Matters got even
worse with the evolution of the Internet.

In early 1994, network news broadcasts made an unprecedented
announcement: All computer users on the Internet should change
their passwords. The announcement was triggered by a notorious
sniffing incident: a centrally located Internet service had been pene-
trated and an attacker had installed unattended sniffer programs to
collect passwords from the user traffic passing through it. Further
investigations found sniffer programs in many other Internet sites.
Investigators estimated that at least 100,000 passwords were col-
lected by the sniffers they found.

The evening news recommendation reflects a major advantage of
passwords—if the user thinks the password has been stolen, it is
relatively easy to block the attacker from exploiting the stolen one by
replacing it with a new one. This is another essential defense: every
password system must have a mechanism to allow users to change
their passwords easily.

TROJAN LOGIN

Another clever method for intercepting passwords is a Trojan login
program. This is a program that tricks people into revealing their
passwords. Unlike the Trojan horse program described earlier, this
one doesn’t need to have the victim start it up. Instead, the attacker
starts up the Trojan login program on some workstations or termi-
nals, and the program’s display perfectly mimics the system’s stan-
dard login program. For example, a RAX Trojan login program would
print the following text, just as shown in Figure 1.4:

#*rax v3 m86, sign on.

When someone like John Doe tries to log on by typing the appro-
priate command (“/id”), the Trojan login program saves a copy of his
user name in a secret file. Then the program types “*Password?” on
one line and the blinding characters on the next. When John types
his password, the program responds by typing “*Password incor-
rect.” Meanwhile, the program saves John’s typed-in password in
the file along with his user name. Finished, the program exits and
logs out. If John tries again, he sees the same printout on the termi-

see Note 16.

D-11

A-11

27THE AUTHENTICAT ION LANDSCAPE

nal, but this time it comes from the actual RAX login procedure.
Meanwhile, the attacker has captured John’s password.

Modern systems solve this problem with a secure attention signal.
This is a special keystroke that the underlying system always recog-
nizes as a request for special services like logging on. Whenever
someone types that keystroke, the system intercepts it and runs a
built-in program to find out what the person wants to do. The secure
attention key provides a trusted path between the person operating
the computer and a piece of trustworthy software on the computer.
The U.S. government requires the presence of a trusted path mecha-
nism on systems with extremely high security requirements as
described in the TCSEC.

User application programs, like the Trojan login program, never
see the secure attention signal, so they can’t perform their masquer-
ade. Microsoft Windows NT and Windows 2000 use the keystroke
control-alt-delete as a secure attention signal. Other systems, like
Digital’s VAX/VMS and high security versions of Unix, also provide
secure attention keys.

VAN ECK SNIFFING

In 1985, a Dutch scientist named Wim van Eck described how one
could eavesdrop on any video monitor using relatively simple tech-
niques. Video monitors use a lot of energy, and the process of scan-
ning data onto the phosphorescent screen of a video tube generates
lots of stray electromagnetic signals. The signals are called van Eck
radiation and, in theory, are visible from as far away as 1 kilometer.

An attacker with the right equipment could read passwords and
other secrets displayed on any nearby video screens. Win Schwar-
tau, a well-known figure in information warfare circles, demon-
strated the technique on a television show in 1991. Schwartau has
suggested that a properly designed van Eck receiver would not be
limited to intercepting video signals. In one theoretical scenario, a
receiver could retrieve enough information from an automated teller
machine (ATM) to reconstruct customers’ bank cards and the corre-
sponding personal identification number (PIN).

The first defense against van Eck interception is to be sure that
passwords do not appear on video displays. Most systems include
this feature already, even though it has a serious impact on reliabil-

D-12

see Note 17.

see Note 18.

A-12

see Note 19.

28 1 .6 AUTHENTICAT ION FACTORS

ity and usability of the user interface (see Section 6.1). Additional
protection could be provided by adding some shielding to video dis-
plays and other computer equipment. Unfortunately, research and
engineering in this area traditionally has been discouraged in the
United States by government intelligence agencies, notably the
National Security Agency (NSA).

Classic passwords are not, of course, the only authentication
technique available on computers. They are merely the oldest and
easiest to implement. In the years since timesharing first evolved,
password systems have improved dramatically and have incorpo-
rated additional security measures. Moreover, other authentication
techniques have evolved to handle situations where passwords sim-
ply can’t do the job.

1.6 AUTHENTICATION FACTORS

Things you know...
Things you have...
Things you are...

— Carlton et al., Alternate Authentication Mechanisms

Even before computers came along, people used a variety of distin-
guishing characteristics to authenticate one another. Computer sys-
tems have applied these characteristics whenever people have found
a cost-effective way to implement them digitally. Today, authentica-
tion techniques are usually classified according to the distinguish-
ing characteristic they use, and we classify the characteristics in
terms of three factors described below and summarized in Table 1.2.
Each factor relies on a different kind of distinguishing characteristic
to authenticate people.

• Something you know: a password

The distinguishing characteristic is secret information that
unauthorized people do not know. Before computers, this might
be a spoken password or a memorized combination for a lock. In
computers it might be a password, a passphrase, or a PIN.

Developers can implement a plausible looking password
mechanism cheaply and easily. A memorized secret is perfect for

see Note 20.

29THE AUTHENTICAT ION LANDSCAPE

roaming users, that is, people who connect to the system from
unpredictable remote locations, since it travels with them.

Passwords are weak, however, for two reasons. First, their
effectiveness depends on secrecy and it is hard to keep them
secret. There are countless ways to sniff or otherwise intercept
them, and there is usually no way to detect a successful sniffing
attack until damage is done. Second, evolving threats on pass-
words have made it relatively easy for attackers to figure out the
passwords that people are most likely to choose and remember.
Even if they choose hard-to-guess passwords, people are more
likely to forget them or be obliged to write them down in order to
have them available when needed. A written password is, of
course, more vulnerable to theft than a memorized one. Even
well-meaning people are likely to violate password usage rules at
some point, simply to ensure they can use their computer when
needed. Chapters 2 and 3 discuss passwords further, and Chap-
ter 6 explores the problem of choosing effective passwords.

• Something you have: a token

The distinguishing characteristic is that authorized people pos-
sess some specific item. Before computers this might be a seal

TABLE 1.2: Authentication Factors

Factor Benefits Weaknesses Examples

Something you
know: password

Cheap to
implement,
portable

Sniffing attacks,
Can’t detect sniffing attacks,
Passwords are either easy to guess
or hard to remember,
Cost of handling forgotten pass-
words

Password, PIN,
Safe combination

Something you
have: token

Hardest to
abuse

Expensive,
Can be lost or stolen,
Risk of hardware failure,
Not always portable

Token, Smart card,
Secret data embed-
ded in a file or device,
Mechanical key

Something you
are: biometric

Easiest to
authenticate
with,
portable

Expensive,
Replay threats,
Privacy risks,
Characteristic can’t be changed,
False rejection of legitimate users,
Characteristic can be injured

Fingerprint, Eye scan,
Voice recognition,
Photo ID

30 1 .6 AUTHENTICAT ION FACTORS

with a personal insignia or a key for a lock. In computers it
might be nothing more than a data file containing the distin-
guishing characteristic. Often, the characteristic is embedded in
a device like a magnetic stripe card, a smart card, or a password
calculator. In this book, such things are called tokens. The char-
acteristic might even be embedded in a large piece of equipment
and thus not be very portable.

Token-based authentication is the hardest technique to abuse
since it relies on a unique physical object that one must have in
order to log on. Unlike passwords, the owner can tell if the token
has been stolen, and it’s hard for the owner to share the token
with others and still be able to log on. The major weaknesses are
higher costs and the risk of loss or hardware failure. Portability
can also be a problem. Tokens are discussed further in Chapter
9.

• Something you are: a biometric

The distinguishing characteristic is some physical feature or
behavior that is unique to the person being authenticated.
Before computers, this might have been a personal signature, a
portrait, a fingerprint, or a written description of the person’s
physical appearance. With computers, the person’s distinguish-
ing characteristic is measured and compared against a previ-
ously collected pattern from the authentic person. Well-known
techniques use a person’s voice, fingerprints, written signature,
hand shape, or eye features for authentication. In this book,
such things are called biometrics.

Biometric authentication is usually the easiest approach for
people to use for authentication. In most cases, a well-designed
biometric system simply accepts a reading from the person and
correctly perform the authentication. The distinguishing charac-
teristic is obviously portable, since it’s part of the owner’s body.

However, the benefits are offset by several weaknesses. Typi-
cally, the equipment is expensive to buy, install, and operate in
comparison to other systems. Biometric readings face the risk of
interception when used remotely; the thief might replay the
reading to masquerade as its owner or use the reading to track
its owner. Once the biometric reading has fallen into the wrong

31THE AUTHENTICAT ION LANDSCAPE

hands, its owner has no way to reverse the damage, since the
biometric trait is usually impossible to change.

Moreover, the process is a tricky one. In practice, it can be
hard to make the system sensitive enough to reject unauthorized
users without occasionally rejecting authorized users. Physiolog-
ical changes and injuries can also invalidate biometric readings:
in one case a woman working at a high-security installation was
denied entrance by the biometric device at the front door
because her pregnancy had caused changes in her retinal blood
vessels.

Despite their shortcomings, biometrics remain a promising
technique. Biometrics are discussed further in Chapter 7.

In other words, authentication always depends on something lost,
injured, or forgotten. There really is no “one best way” to authenti-
cate people. The choice depends on the particular risks faced by a
computing system and the costs (in terms of equipment, administra-
tion, and user impact) that the proprietor is willing to incur. Sites
often rely on passwords because of lower costs: the implementation
requires no special hardware to purchase, install, and maintain.
Organizations use other techniques only when the potential loss
from mishandled passwords clearly exceeds the cost of something
different.

All authentication factors have their own shortcomings, and indi-
vidual factors can’t always provide the level of protection a site
might need. In such cases, sites will use authentication mecha-
nisms that incorporate two or three factors. Such systems are often
referred to as strong authentication since the benefits of one factor
can block the shortcomings of another. ATM cards, which always
require a memorized PIN, provide a well-known example of two-fac-
tor authentication.

A common theme in all three factors is that the distinguishing
characteristic is uniquely associated with the person being authenti-
cated. This becomes a problem when operating over computer net-
works. Often, the authentication mechanism has nothing to go on
except a collection of bits derived from the distinguishing character-
istic. There is no mechanism (aside from additional authentication)
to establish the provenance of the bits themselves. There is no way

32 1 .7 JUDGING ATTACK PREVALENCE

to tell if a biometric reading was really collected from the person at
the other end or if it was sniffed and retransmitted by someone else.
There is no way to tell if the password comes from the authorized
person or from someone else. In short, simple authentication mech-
anisms often rely on keeping the distinguishing characteristic
secret.

1.7 JUDGING ATTACK PREVALENCE

While it is important to be aware of the attacks that could take place
against a given security technique, it is also important to under-
stand how likely a particular attack might be. This often depends on
the degree of sophistication each attack requires. Most proprietors
won’t be as concerned about attacks that require the resources of a
national government as they are about an attack that’s known by
every teenaged Internet user.

This book classifies attacks into five levels of prevalence. The dif-
ferent levels indicate the relative knowledge and resources the
attacker will need, as well as the degree to which such attacks seem
to occur. Attackers faced with very attractive targets will spend sig-
nificant amounts of effort on intrusions. The rest of this book uses
these classifications to indicate the prevalence of attacks.

• Trivial attack

There are books filled with trivial attacks. Anyone who knows
the “trick” behind one of these attacks can perform it using con-
ventional software already present on a typical workstation.
Internet e-mail forgery is the classic example of a trivial attack.
Anyone with a typical Internet e-mail package on a personal
computer can configure it to generate e-mail that claims to be
from someone else (for example, president@whitehouse.gov). The
attack doesn’t rely on special hacker tools or nonstandard soft-
ware. Anyone can do it if he or she knows how.

• Common attack

Unlike trivial attacks, the attacker must acquire specific soft-
ware tools or take similar steps that may indicate premeditation.
Password sniffing is an example of a common attack: a hacker
installs keystroke capture software that collects someone’s pass-
word to exploit later. Viruses are another example: the author

see Note 21.

33THE AUTHENTICAT ION LANDSCAPE

either must use a virus construction program to create the virus
or must intentionally write the virus from scratch. The presence
of attack software on workstations indicates the owners may be
either victims or perpetrators of software-based attacks, depend-
ing on the particular software involved. Often, there are
well-known security measures to apply to common attacks.
Unfortunately, there are also a large and growing number of
common attacks. There are tools that help attackers detect
well-known vulnerabilities and it can be time consuming to try
to block all of them.

• Physical attack

These attacks require the attacker’s physical presence at the
point of attack. They may also require the manipulation of com-
puter hardware and/or special hardware tools. The attacks may
also depend on special knowledge and training. In Section 1.4
we briefly described “rubber hose” attacks, but the other physi-
cal attacks in this book are directed against equipment, not peo-
ple. In Chapter 4 we discuss attacks in which the attacker opens
the computer case and rewires the hard drive in order to copy its
contents. Other examples include sniffing or wiretapping when
the connecting wire is physically tapped. Unlike common
attacks, physical attacks tend to leave physical evidence, and
this tends to deter less motivated attackers.

• Sophisticated attack

A sophisticated attack is an attack that requires sophisticated
knowledge of security vulnerabilities. While common attacks
may be performed by people with good tools and limited knowl-
edge or skill, a sophisticated attack may require the attacker to
construct a tool to implement the attack. The work of the Wily
Hacker tracked by Clifford Stoll in the late 1980s is an example
of a sophisticated attack: the hacker had a “bag of tricks” con-
sisting of trivial and common attacks, and he applied multiple
tricks to penetrate and exploit the systems he attacked. The
attacks and exploitation took a significant effort by an individual
attacker working part-time. Sites defend against sophisticated
attacks by restricting their operations to reduce their vulnerabil-
ity to them. see Note 22.

34 1 .8 SUMMARY T ABLES

• Innovative attack

These are attacks that exploit theoretical vulnerabilities that
have not been publicly demonstrated to be practical. Such
attacks often bring significant resources to bear in order to
breach a strong security mechanism. An innovative attack prob-
ably involves a large, well-funded team of attackers working for
months or years to breach the adversary’s defenses. For exam-
ple, Allied cryptanalysts during World War II made an innovative
attack against German cryptographic equipment by combining
mathematical analysis with trial-and-error decryption attempts.
Innovative attacks tend to be very expensive, but they also tend
to succeed if the attacker is willing to invest the resources
needed to achieve success. Nuclear command and control sys-
tems are designed to resist innovative attacks by spending enor-
mous amounts of money on redundancy and least privilege.

While security experts may often agree in general terms about the
prevalence of various attacks, there is no widely accepted notion of
attack prevalence or how to estimate it. The estimates of prevalence
appearing in this book are based on attack reports and descriptions,
and try to reflect the consensus of the computer security commu-
nity. These estimates primarily reflect the author’s qualitative opin-
ion and are not based on any systematic measurements. As time
goes on and attacks evolve, the prevalence of various attacks will no
doubt change.

1.8 SUMMARY TABLES

The last section of each chapter contains two summary tables: one
summarizing attacks described in the chapter, and another describ-
ing the corresponding defenses. The attack summary gives a brief
name for each attack, summarizes the security problem, estimates
the sophistication, and briefly describes how the attack works.
Sophistication is assessed using the classification described in Sec-
tion 1.7. If modern software systems routinely provide a defense
against a particular attack, it is marked as “Obsolete” in the attack
summary. The defense summary gives a brief name for each

see Note 23.

35THE AUTHENTICAT ION LANDSCAPE

defense, a list of attacks it should protect against, and a brief
description of what it does. If the chapter introduces an attack for
which it introduces no defense, the attack is noted in an additional
subsection titled Residual Attacks.

TABLE 1.3: Attack Summary

Attack
Security Problem Prevalence Attack Description

A-1. Keystroke
confusion

Masquerade as someone
else

Obsolete A bug found in the timesharing
software allowed a peculiar
sequence of characters to skip
password checking

A-2. Password
file theft

Recover all other users’
passwords

Obsolete Weak protection of password
file allowed its contents to be
stolen

A-3. Trojan
horse

Recover hidden informa-
tion, like a password file

Common,
Sophisticated,
or Innovative

Attacker writes a program that
gets used by the victim.
Unknown to the victim, the pro-
gram copies or modifies the
victim’s data. A virus is a
well-known example

A-4. On-line
password
guessing

Recover a user’s pass-
word

Trivial Interactive trial-and-error
attack to try to guess a user’s
password

A-5. Password
audit review

Recover a user’s pass-
word

Common Review audit records of a user’s
mistakes while logging on to
make guesses of the user’s
password

A-6. Helpful dis-
closure

Recover a user’s pass-
word

Trivial Attacker convinces a victim to
reveal a password in support of
an apparently important task

A-7. Bogus
password
change

Recover a user’s pass-
word

Trivial Attacker convinces victims to
change their passwords to a
word selected by the attacker

A-8. Rubber
hose disclosure

Recover hidden informa-
tion, like a user’s password

Physical Attacker uses threats or physi-
cal coercion to recover secret
information from the victim

A-9. Shoulder
surfing

Recover a user’s pass-
word

Trivial Attacker watches a user type
his password, then uses it him-
self

36 1 .8 SUMMARY T ABLES

A-10. Key-
stroke sniffing

Recover a user’s pass-
word

Common Software watches keystrokes
transmitted from the user to the
system for typed-in user names
and passwords, save for later
use

A-11. Trojan
login

Recover a user’s pass-
word

Common Run a program that mimics the
standard login program, but
collects user names and pass-
words when people try to log
on

A-12. van Eck
Radiation

Recover hidden informa-
tion, like a user’s password

Physical Use a device to intercept van
Eck radiation from the victim’s
video monitor, and retrieve any
secrets the victim displays

TABLE 1.4: Defense Summary

Defense Foils Attacks Description

D-1. Good software
design

A-1. Keystroke confu-
sion

Design software in an organized way to
reuse existing functions; keep procedures
simple and comprehensible

D-2. Hashed passwords A-2. Password file theft
A-6. Helpful disclosure

Store passwords in a one-way hashed for-
mat. Avoid storing or handling the password
in its readable, unhashed form

D-3. Audit bad
passwords

A-4. On-line password
guessing

Keep an audit trail of all attempts to log on,
and use the trail to detect password guess-
ing attacks

D-4. Limit password
guessing

A-4. On-line password
guessing
A-5. Password audit
review

Keep track of the number of incorrect
guesses someone may make of a password,
and respond to excessive guesses as indicat-
ing a password guessing attack

TABLE 1.3: Attack Summary (Continued)

Attack
Security Problem Prevalence Attack Description

37THE AUTHENTICAT ION LANDSCAPE

RESIDUAL ATTACKS

A-3. Trojan horse—There is no general-purpose defense against
this attack. There are techniques to resist Trojan horses
designed to operate in particular ways. For example, antivirus
software addresses the virus problem. There are also integrity
checking programs that can detect modifications to files that
rarely change, like the login program.

D-5. Password change
policy

A-6. Helpful disclosure Establish a policy to restrict the ability of the
help desk to change passwords for users.
Password changes must take place under
safe circumstances

D-6. Password nondis-
closure policy

A-6. Helpful disclosure
A-7. Bogus password
change

Establish a policy that nobody should dis-
close a password to another person under
any circumstances

D-7. Duress signal A-8. Rubber hose dis-
closure

Lets a user signal that the login process is tak-
ing place under duress

D-8. Honey pot A-8. Rubber hose dis-
closure

Allows attackers to enter the system, pre-
sents them with a legitimate-appearing tar-
get, while restricting their access to truly
valuable resources and keeping them under
surveillance

D-9. Password blinding A-9. Shoulder surfing Do not print or display the keys typed when
the user types a password

D-10. Memory protec-
tion

A-10. Keystroke sniffing Use the CPU’s memory protection feature to
protect the keyboard input buffer from read-
ing by any software except the OS

D-11. Change pass-
word

A-2. Password file theft
A-9. Shoulder surfing
A-10. Keystroke sniffing

The password’s owner can change the pass-
word to something new when there is a risk
that it has been intercepted by an attacker

D-12. Secure attention A-11. Trojan login System assigns a special keystroke to secu-
rity-related user requests like logging on

TABLE 1.4: Defense Summary (Continued)

Defense Foils Attacks Description

