
Designing & Implementing Secure Applications

Secure
Coding

Principles & Practices

Mark G. Graff & Kenneth R. van Wyk

Secure Coding
Principles and Practices

Other Java™ resources from O’Reilly

Related titles Enterprise JavaBeans™

Java™ & XML
Java™ Cookbook
Java™ Enterprise in a

Nutshell
Java™ I/O
Java™ in a Nutshell

Java™ Performance Tuning
Java™ Programming with

Oracle SQLJ
Java™ Security
JavaServer™ Pages
Java™ Swing
Learning Java™

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s books
on Java and related technologies, including sample chap-
ters and code examples.

OnJava.com is a one-stop resource for enterprise Java de-
velopers, featuring news, code recipes, interviews,
weblogs, and more.

Conferences O’Reilly & Associates bring diverse innovators together
to nurture the ideas that spark revolutionary industries.
We specialize in documenting the latest tools and sys-
tems, translating the innovator’s knowledge into useful
skills for those in the trenches. Visit conferences.or-
eilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today with a free trial.

Secure Coding
Principles and Practices

Mark G. Graff and Kenneth R. van Wyk

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

1

Chapter 1 CHAPTER 1

No Straight Thing

Out of the crooked timber of humanity,
no straight thing can ever be made.

—Immanuel Kant

In late 1996 there were approximately 14,000,000 computers connected to
the Internet. Nearly all of them relied on the Transmission Control Protocol
(TCP), one of the fundamental rule sets underlying communication between
computers, and the one used for most common services on the Internet.
And although it was known to have security weaknesses, the protocol had
been doing its work quietly for nearly two decades without a major attack
against it.

But on September 1 of that year, the online magazine Phrack published the
source code for a network attack tool that exploited the trusting way the
protocol handled connection requests (see the sidebar “A Fractured Dia-
logue”). Suddenly, the majority of those 14,000,000 computers were now
vulnerable to being taken offline—in some cases, crashed—at the whim of
any malcontent capable of compiling the attack program.

It was a time when new vulnerabilities were being disclosed daily, and the
article at first went unnoticed by most security professionals. It was, how-
ever, read carefully in some quarters. Within days, an ISP in New York City
named Panix was repeatedly savaged using the technique. Day after day,
bombarded by tens of thousands of false connection requests—known as a
SYN flood, after the protocol element that was misapplied—Panix was help-
less to service its paying customers. The security community took notice and
began to mobilize; but before experts could come up with an effective
defense, the attacks spread. The Internet Chess Club was clobbered several
times in September. Scattered attacks troubled several more sites, mostly
media outlets, in October. In November, on election night, the New York
Times web site was disabled, and the resulting publicity opened the

2 | Chapter 1: No Straight Thing

floodgates. By the time an effective defense had been devised and widely
deployed some weeks later, hundreds of sites around the world had been
victimized. Tens of thousands more were affected, as experts and layper-
sons alike struggled to cope with the practical impact of this first wide-
spread denial of service attack.

A Fractured Dialogue
What happens when you call someone on the phone and they hang up before
you do—and you decide not to hang up yourself? Until a few years ago (in the
U.S., at least), it was possible to tie up the other person’s telephone line for a
long time this way.

Today we might call this trick a denial of service attack. It’s an example of
what can happen when one party to a conversation decides not to play by the
rules. In the network world, a set of such rules is called a protocol. And the
network attack known as a TCP SYN flood is an example of what can happen
when an attacker controlling one side of a computer dialogue deliberately vio-
lates the protocol.

The Transmission Control Protocol (TCP) is used many billions of times a
day on the Internet. When email is exchanged, for example, or when some-
one visits a web site, the dialogue between the sending and receiving comput-
ers is conducted according to these rules. Suppose that computer A wants to
initiate a connection with computer B. Computer A offers to “synchronize”
with computer B by sending a set of ones and zeros that fit a special pattern.
One feature of this pattern is that a particular bit (the SYN flag) is set. Com-
puter B agrees to the exchange by replying in an equally specific bit pattern,
setting both the SYN flag and the ACK (“acknowledge”) flag. When com-
puter A confirms the connection by replying with its own ACK, the TCP ses-
sion is open, and the email or other information begins to flow. (Figure 1-1
shows this exchange.)

As early as the mid-1980s, researchers realized that if the initiating computer
never completed the connection by sending that final acknowledgment, the
second computer would be in a situation similar to that of the hapless tele-
phone user whose caller never hung up. To be sure, in each case the computer
programs implementing the dialogue can break the connection after a suitable
period of time, freeing up the telephone line or network connection. But sup-
pose that an attacker writes software capable of sending dozens or hundreds of
false connections requests per second. Wouldn’t the receiving computer be
overwhelmed, keeping track of all those half-open connections? That turns out
to be the foundation for a TCP SYN flood attack; and in 1996, it was deadly.a

a The version of the attack code that posed the biggest problem had an additional “feature”: it pro-
duced “SYN packets” that included false sender addresses, making it much harder for the receiv-
ing computers to deal with the attack without shutting out legitimate connection requests.

No Straight Thing | 3

Why are we telling this story? True, the attack makes for interesting read-
ing. And true, the attackers deserve our contempt. But there are, sadly,
many other Internet attacks that we might describe. Why this one?

It’s partly that both of us were heavily involved in the worldwide response of
the security community to the vulnerability and resulting attacks. Mark
worked at Sun Microsystems then and was integrally involved in Sun’s tech-
nical response to correcting their networking software. Ken worked the
problem from the incident response side—he was chairman of FIRST (the
international Forum of Incident Response and Security Teams) at the time.

More importantly, the TCP SYN flood attack exemplifies a multitude of dif-
ferent secure coding issues that we are deeply concerned about. As we wind
our way through this book, we’ll use this particular example to illustrate
many points, ranging from the technical to the psychological and procedural.

We’ll return to this story, too, when we discuss design flaws, errors in
implementation, and various issues of secure program operation, because it
so clearly represents failure during every phase of the software development
lifecycle. If the architecture of the TCP protocol had been more defensively
oriented in the first place,* the attack would never have been possible. If the
request-processing code in the affected operating systems had been designed
and implemented with multiple layers of defense, the attacks wouldn’t have
brought down the whole house of cards. If the software had been tested and
deployed properly, someone would have noticed the problem before it
affected thousands of Internet sites and cost millions of dollars in lost time,
data, and opportunity. This “lifecycle” way of looking at security is one we’ll
come back to again and again throughout this book.

We’ll mention several other attacks in this book, too. But our focus won’t be
on the details of the attacks or the attackers. We are concerned mainly with
why these attacks have been successful. We’ll explore the vulnerabilities of
the code and the reasons for those vulnerabilities. Then we’ll turn the tables

Figure 1-1. How a normal TCP network session works

* We are not suggesting that the original architects of the protocol erred. Their architecture was so
successful that the Internet it made possible outgrew the security provisions of that architecture.

A

Source

B

Destination
SYN

SYN-ACK

ACK

TCP session open SYN = Synchronize/start
ACK = Acknowledgment

1

2

3

4

4 | Chapter 1: No Straight Thing

and make our best case for how to build secure applications from the inside
out. We’ll ask how we can do better at all stages.

More simply, we’ll try to understand why good people write bad code.
Smart, motivated people have been turning out new versions of the same
vulnerabilities for decades. Can “no straight thing” ever be made?

The Vulnerability Cycle
Let’s consider for a moment an all-too-common sequence of events in
today’s security world. (Figure 1-2 illustrates it graphically.)

1. Someone uncovers and discloses a new vulnerability in a piece of
software.

2. Bad guys quickly analyze the information and use the vulnerability to
launch attacks against systems or networks.

3. Simultaneously, good guys (we’ll include security folks who work for
the vendor) start looking for a fix. They rally software development
engineers in their respective organizations to analyze the vulnerability,
develop a fix, test the fix in a controlled environment, and release the fix
to the community of users who rely on the software.

4. If the vulnerability is serious, or the attacks are dramatic, the various
media make sure that the public knows that a new battle is underway.
The software developers at the organization that produced the product
(and the vulnerability!) are deluged with phone calls from the media,
wanting to find out what is going on.

5. Lots of folks get very worried. Pundits, cranks, finger-pointers, and
copycats do their thing.

6. If a knee-jerk countermeasure is available and might do some good,
we’ll see a lot of it. (For example, CIOs may direct that all email com-
ing into an enterprise be shut off.) More often than not, this type of
countermeasure results in numerous and costly business interruptions
at companies that rely on the software for conducting their business
operations.

7. When a patch is ready, technically oriented folks who pay close atten-
tion to such matters obtain, test, and apply the patch. Everyday system
administrators and ordinary business folks may get the word and follow
through as well. Perhaps, for a lucky few, the patch will be installed as
part of an automated update feature. But inevitably, many affected sys-
tems and networks will never be patched during the lifetime of the vul-
nerability—or will only receive the patch as part of a major version
upgrade.

The Vulnerability Cycle | 5

8. Security technicians, their attention focused, examine related utilities
and code fragments (as well as the new patch itself!) for similar vulnera-
bilities. At this point, the cycle can repeat.

9. Weeks or months go by, and a piece of malicious software is released on
the Internet. This software automates the exploitation of the vulnerabil-
ity on unpatched systems, spreading without control across a large
number of sites. Although many sites have patched their systems, many
have not, and the resulting panic once again causes a great deal of busi-
ness interruption across the Internet.

What’s so bad about this scenario? Let’s consider some of the effects.

Many companies (some big, some small) just can’t keep up with today’s cas-
cade of patches. To get a sense of the scope of the problem, let’s assume that
the Internet and its critical services run on 100 key applications. We esti-
mate (conservatively, in our opinions) that there are 100 or so vulnerabili-
ties per application system. If that guess is in the ballpark, that’s about
10,000 security holes for hackers to exploit, just in key applications!

Here’s a rough calculation relating to operating systems. Noted “secure
coder” Wietse Venema estimates that there is roughly one security bug per
1000 lines in his source code. Given that desktop operating systems such as
Linux or Windows represent some 100 million lines of code, this translates
into hundreds of thousands of potential security bugs. According to CERT
statistics, collectively we will probably discover roughly 5000 bugs in 2003.
At this rate it could take 20 years per operating system to find all the secu-
rity bugs. Fixing them will take a little longer; our experience is that, using
today’s common practices, 10% to 15% of all security patches themselves

Figure 1-2. The vulnerability/patch/alarm cycle

Discover vulnerability

De
ve

lo
p patch Get alert and

install patch

6 | Chapter 1: No Straight Thing

introduce security vulnerabilities! (It is only fair to point out here that these
numbers are anything but scientific, but we believe they’re not far from cor-
rect and the underlying point remains the same.)

Applying patches over and over—as though system administrators had
nothing else to do—is never going to give us a secure Internet-based infra-
structure. As society’s reliance on Internet services grows, it’s only a matter
of time before catastrophe strikes. The software so many of us depend on
every day is frighteningly open to attack.

What is an Attack?
In a general sense, an attack on a system is any maliciously intended act
against a system or a population of systems. There are two very important
concepts in this definition that are worth pointing out. First, we only say
that the act is performed with malicious intent, without specifying any goals
or objectives. Second, some attacks are directed at a particular system, while
others have no particular target or victim.* Let’s look at these concepts and
terms one by one:

Goals
The immediate goal of an attack can vary considerably. Most often,
though, an attack goal is to damage or otherwise hurt the target, which
may include stealing money, services, and so on.

Subgoals
Achieving one or more of the goals above may require first reaching a
subgoal, such as being granted elevated privileges or authorizations on
the system.

Activities
The activities that an attacker engages in are the things that he does that
could help him achieve one or more of his subgoals. These could
include using stolen login credentials (e.g., username and password);
masquerading as a different computer, user, or device; flooding a net-
work with malformed packets; and so on.

Events
The activities mentioned above may result in attack events—improper
access could be granted, request processing could be suspended, stor-
age space could be exhausted, or a system or program could be halted.

* Note also that in this definition we don’t limit ourselves to events that take place in an electronic
realm. An attack against an application could well involve a physical act, such as carrying a hard
drive out of a data center in a briefcase. For the most part, though, we’ll concentrate on electronic
attacks in this book.

What is an Attack? | 7

Consequences
A further concept, often confused with an attack event, is the business
consequence. By this term we mean the direct result of the events, such
as financial balance sheets being incorrect, or a computer system being
unavailable for a business process.

Impacts
Lastly, the impact of the attack is the business effect. This could include
the tarnishing of a company’s reputation, lost revenue, and other
effects.

The distinction between the attack event and its business consequence is an
important one. The business consequence of an attack depends on the busi-
ness purpose of the affected system, not on the specific attack actions or
events. A direct consequence, for example, might be an inability to process a
business transaction, resulting in an impact of loss of revenue. An indirect
impact might be the tarnishing of the reputation of the business owner,
resulting in an erosion of customer confidence. Figure 1-3 illustrates an
example attack, showing the goals, subgoals, and activities of the attacker,
along with the events, consequences, and impacts from the perspective of
the target enterprise.

We’ve trotted out this terminology because we’ve found that it’s critical to
think clearly and precisely about attacks if we are to prevent them. Does it
surprise you to hear that the potential business impact of an attack may be
relevant to its prevention? It is. Knowing what is at stake is an essential part of
making good design decisions about which defense mechanisms you will use.

How Would You Attack?
How do attackers attack systems? Part of the how depends on the why.
Some want to probe, but do no harm. Others are out to steal. Some seek to
embarrass. A few want only to destroy or win bragging rights with their cro-
nies. While we can’t anticipate all possible motivations, we will try to think
with you about how someone only moderately clever might approach the
problem of compromising the security of your application.

Consider a safecracker. If he is a professional, he probably owns specialized
safecracking tools (a stethoscope—we are told—comes in handy). He prob-
ably also has a thorough knowledge of each target vault’s construction and
operation, and access to useful technical documentation. He uses that
knowledge to his advantage in manipulating the safe’s combination knob,
its internal tumblers, and so on, until he manages (or fails) to open the safe.

8 | Chapter 1: No Straight Thing

In an analogous attack on an application system, the miscreant arms him-
self with knowledge of a system (and tools to automate the application of
the knowledge) and attempts to crack the target system.

Ah, but there are so many ways into a safe! A bank robber who doesn’t have
the finesse of a safecracker can still put on a ski mask and enter the bank
during business hours with a gun. If we were planning such an attack, we
might masquerade as a pair of armored car security officers and enter the
vault with the full (albeit unwitting) assistance of the bank staff. Bribery
appeals to us—hypothetically, of course—as well. How about you? Would
you blast your way in?

There have been many good studies about the motivations and mind-sets of
the kinds of people and personalities who are likely to attack your software.
That’s a book in itself, and in the Appendix, we point you to a few good ones.
In this chapter, we’ll simply encourage you to keep in mind the many facets of
software and of the minds of your attackers. Once you have begun to ask
what can happen, and how (and maybe why), we believe you’re on your way
to enforcing application security. In the case studies at the end of this chap-
ter, we’ll provide examples of constructive worrying we encourage you to do,
as well as examples of what could happen if you don’t worry enough.

Figure 1-3. Attack activities, events, goals, and business consequences

Attacker Target

Battleground

Goal

Steal money

Subgoal

Gain unauthorized
access

Activity

Use stolen password

Event

Access controls are
breached

Impact

Lost revenue

Consequence

Books do not balance-
money missing

What is an Attack? | 9

Attacks and Defenses
In the following sections, we’ll list quite a few types of attacks that your
applications may have to withstand. We’ve divided the discussion into three
categories, according to which stage of development the vulnerability relates:

Architecture/design
While you are thinking about the application

Implementation
While you are writing the application

Operations
After the application is in production

The attacks, of course, will usually—not always—take place while the pro-
gram is running. In each case, we’ll try to make a clear distinction.

At the end of each description, we’ll discuss briefly how an application
developer might approach defending against the attack. We’ll develop these
ideas in greater depth in subsequent chapters, as we make our case that
application security is an essential element at every stage of development.

In these sections we describe only a very few of the many,
many ways that security can be breached. We refer you again
to the Appendix for pointers to more complete discussions,
as well as pointers to formal attack taxonomies.

Architecture/design-level attacks

As a general rule, the hardest vulnerabilities to fix are those resulting from
architectural or design decisions. You may be surprised at how many of the
vulnerabilities you have heard of we ascribe to errors at “pure think” time.

At the end of this section we list two types of attacks, session hijacking and
session killing, that are unusually difficult to defend against from within an
application. What’s the point of mentioning them? As we argue in
Chapter 3, the fact that you as a developer may not be able to institute ade-
quate defenses against an attack does not relieve you of responsibility for
thinking about, planning for, and considering how to minimize the impact
of such an occurrence.

It’s worth mentioning that architectural and design-level attacks are not
always based on a mistake per se. For example, you may have used the tel-
net program to move from one computer to another. It does well what it was
designed to do. The fact that its design causes your username and password
to be sent along the cables between computers, unencrypted, is not a “flaw”
in and of itself. Its design does make it an unattractive choice for using in a
hostile environment, however. (We use ssh instead.)

10 | Chapter 1: No Straight Thing

The following are the main attacks we’ve observed at the architecture/design
level:

Man-in-the-middle attack
A man-in-the-middle (or eavesdropping) attack occurs when an attacker
intercepts a network transmission between two hosts, then masquer-
ades as one of the parties involved in the transaction, perhaps inserting
additional directives into the dialogue.

Defense: Make extensive use of encryption—in particular, strong cryp-
tographic authentication. In addition, use session checksums and
shared secrets such as cookies. (You might, for example, use ssh instead
of telnet, and encrypt your files using utilities such as PGP or Entrust.)

Race condition attack
Certain operations common to application software are, from the com-
puter’s point of view, comprised of discrete steps (though we may think
of them as unitary). One example is checking whether a file contains
safe shell (or “batch”) commands and then (if it does) telling the host
system to execute it. Sometimes, the time required to complete these
separate steps opens a window during which an attacker can compro-
mise security. In this example, there may be a very brief window of
opportunity for an attacker to substitute a new file (containing attack
code) for the previously checked file. Such a substitution can trick an
application into running software of the attacker’s choosing. Even if the
resulting window of opportunity is too short for a human to reliably
exploit it, a program might well be able to repeatedly test and then exe-
cute the attacker’s program at just the right moment in time. Because
the result often depends upon the order in which two or more parallel
processes complete, this problem is known as a “race” condition.*

Defense: Understand the difference between atomic (indivisible) and
non-atomic operations, and avoid the latter unless you are sure there are
no security implications. (Sample actions that do have security implica-
tions include opening a file, invoking a subprogram, checking a pass-
word, and verifying a username.) If you are not sure whether an
operation is atomic, assume that it is not—that is, that the operating
system may execute it in two or more interruptible steps.

Replay attack
If an attacker can capture or obtain a record of an entire transaction
between, say, a client program and a server, it might be possible to

* The example would also be described in the technical literature as a “late binding” problem.

What is an Attack? | 11

“replay” part of the conversation for subversive purposes. Impersonating
either the client or the server could have serious security implications.

Defense: Same as for the man-in-the-middle attack; in addition, con-
sider introducing into any dialog between software elements some ele-
ment (e.g., a sequence identifier) that must differ from session to
session, so that a byte-for-byte replay will fail.*

Sniffer attack
A program that silently records all traffic sent over a local area network
is called a sniffer. Sniffers are sometimes legitimate diagnostic tools, but
they are also useful to attackers who wish to record usernames and
passwords transmitted in the clear along a subnet.

Defense: This attack is best addressed at the network level, where its
impact can be diminished (but not removed) by careful configuration
and the use of “switched” network routers. Still, as an application
writer, you can render sniffers fairly harmless by making maximal effec-
tive use of encryption.

Session hijacking attack
By exploiting weaknesses in the TCP/IP protocol suite, an attacker
inside the network might be able to hijack or take over an already estab-
lished connection. Many tools have been written and distributed on the
Internet to implement this rather sophisticated technical attack.

Defense: This network-level attack is quite difficult to defend against
from within application software. Encryption, of course, is a help
(although a discussion of its limitations is beyond our scope here). And
some operational procedures can help detect a hijacking after the fact, if
careful logging provides enough information about the session.

Session killing attack
Legitimate TCP/IP sessions can be terminated when either of the com-
municating parties sends along a TCP reset packet. Unfortunately, an
attacker inside the network might be able to forge the originating
address on such a packet, prematurely resetting the connection. Such an
attack could be used either to disrupt communications or, potentially,
to assist in an attempt to take over part of a transaction (see the descrip-
tion of session hijacking above).†

* You might consider, for example, using the (trustworthy) current time as an example of a
sequence identifier, such as the Kerberos 5-minute overlap requirement.

† Note, too, that such attacks can be successful even if the attacker is not on the local segment, if
the network is not doing any ingress filtering—that is, if there’s no check to see if a data packet is
really coming from the destination listed inside the packet.

12 | Chapter 1: No Straight Thing

Defense: Like session hijacking attacks, session killing attacks are diffi-
cult to defend against from within an application. Unfortunately, we
believe that deterrence from within the application is not possible.
However, your application may be able to compensate after the fact by
either reasserting the connection or reinitializing the interrupted trans-
action.

Implementation-level attacks

We suspect that the kinds of errors we list in this section are the ones most
folks have in mind when we talk about security vulnerabilities. In general,
they’re easier to understand and fix than design errors. There are many vari-
eties of implementation-level attacks. Here are three common examples:

Buffer overflow attack
Many programming languages (C, for example) allow or encourage pro-
grammers to allocate a buffer of fixed length for a character string
received from the user, such as a command-line argument. A buffer
overflow condition occurs when the application does not perform ade-
quate bounds checking on such a string and accepts more characters
than there is room to store in the buffer. In many cases, a sufficiently
clever attacker can cause a buffer to be overflowed in such a way that
the program will actually execute unauthorized commands or actions.

Defense: Code in a language (such as Java) that rules out buffer over-
flows by design. Alternatively, avoid reading text strings of indetermi-
nate length into fixed-length buffers unless you can safely read a sub-
string of a specific length that will fit into the buffer.

Back door attack
Many application systems have been compromised as the result of a
kind of attack that might be said to take place while the software is
being written! You may have read about cases in which a rogue pro-
grammer writes special code directly into an application that allows
access control to be bypassed later on—for example, by using a “magic”
user name. Such special access points are called back doors.

Defense: Adopt quality assurance procedures that check all code for
back doors.

Parsing error attack
Applications often accept input from remote users without properly
checking the input data for malicious content. The parsing, or check-
ing, of the input data for safety is important to block attacks. (Further,
industrial-strength parsing of program input with robust error checking
can greatly reduce all kinds of security flaws, as well as operational soft-
ware flaws.)

What is an Attack? | 13

One famous example of parsing errors involved web servers that did not
check for requests with embedded “../” sequences, which could enable
the attacker to traverse up out of the allowed directory tree into a part of
the filesystem that should have been prohibited.

While parsing input URLs for “../” sequences may sound simple, the
developers failed repeatedly at catching all possible variants, such as
hexadecimal or Unicode-encoded strings.

Defense: We recommend arranging to employ existing code, written by
a specialist, that has been carefully researched, tested, and maintained.
If you must write this code yourself, take our advice: it is much safer to
check to see if (among other things) every input character appears on a
list of “safe” characters than to compare each to a list of “dangerous”
characters. (See Chapter 4, for a fuller discussion.)

Operations-level attacks

Most attacks, as we have said, take place after an application has been
released. But there is a class of special problems that can arise as a result of
decisions made after development, while the software is in production. We
will have much more to say about this subject in later chapters. Here is a
preview.

Denial-of-service attack
An application system, a host, or even a network can often be rendered
unusable to legitimate users via a cascade of service requests, or per-
haps a high-frequency onslaught of input. When this happens, the
attacker is said to have “denied service” to those legitimate users. In a
large-scale denial-of-service attack, the malefactors may make use of
previously compromised hosts on the Internet as relay platforms for the
assault.

Defense: Plan and allocate resources, and design your software so that
your application makes moderate demands on system resources such as
disk space or the number of open files. When designing large systems,
include a way to monitor resource utilization, and consider giving the
system a way to shed excess load. Your software should not just com-
plain and die in the event that resources are exhausted.

Default accounts attack
Many operating systems and application programs are configured, by
default, with “standard” usernames and passwords. These default user-
names and passwords, such as “guest/guest” or “field/service”, offer
easy entry to potential attackers who know or can guess the values.

Defense: Remove all such default accounts (or make sure that system
and database administrators remove them). Check again after installing

14 | Chapter 1: No Straight Thing

new software or new versions of existing software. Installation scripts
sometimes reinstall the default accounts!

Password cracking attack
Attackers routinely guess poorly chosen passwords by using special
cracking programs. The programs use special algorithms and dictionar-
ies of common words and phrases to attempt hundreds or thousands of
password guesses. Weak passwords, such as common names, birth-
days, or the word “secret” or “system”, can be guessed programmati-
cally in a fraction of a second.

Defense: As a user, choose clever passwords. As a programmer, make
use of any tools available to require robust passwords.* Better yet, try to
avoid the whole problem of reusable passwords at design time (if feasi-
ble). There are many alternative methods of authentication, including
biometric devices and smart cards.

Why Good People Write Bad Code
Now that we’ve walked on the dark side, looking at all kinds of things that
can go wrong with our software, let’s turn our attention back to root causes:
why do software flaws occur? Why do good people write bad code?

A great many people believe that vulnerabilities are the spawn of stupid (and
probably slothful) programmers. Some adherents to this credo have been
customers of ours. Although we have listened respectfully to the arguments
for many hours, we disagree.

We believe that, by and large, programmers want to write good software.
They surely don’t set out with the intention of putting security flaws in their
code. Furthermore, because it’s possible for a program to satisfy a stringent
functional specification and nevertheless bring a vulnerability to life, many
(if not most) such flaws have been coded up by people who do their best
and are satisfied with (even rewarded for) the result.

What’s so hard about writing secure code? Why do vulnerabilities exist at
all, let alone persist for decades? Why can’t the vendors get it right?

We believe there are three sets of factors that work against secure coding:

* The best passwords are easy to remember and hard to guess. Good password choices might be,
for example, obscure words in uncommon languages you know, or letter combinations com-
prised of the initial (or final) letters of each word in a phrase you can remember. Consider also
including punctuation marks and numbers in your passwords.

Why Good People Write Bad Code | 15

Technical factors
The underlying complexity of the task itself

Psychological factors
The “mental models,” for example, that make it hard for human beings
to design and implement secure software

Real-world factors
Economic and other social factors that work against security quality

This is a hard problem. After a close look at our examples, we think you will
come to agree that wiping out security vulnerabilities by just doing a better
job of coding is a monumental—perhaps hopeless—task. Improved coding
is critical to progress, of course. But some vulnerabilities seem to arise with-
out any direct human help at all. We engineers will have to adapt our tools
and systems, our methods, and our ways of thinking. Beyond this, our com-
panies, our institutions, and our networked society itself will need to face up
to the danger before this scourge can pass away.

Technical Factors
Truly secure software is intrinsically difficult to produce. A true story may
help show why.

The Sun tarball story

While Mark worked at Sun back in 1993, he received one of those middle-
of-the-night phone calls from CERT he used to dread so much. Jim Ellis told
him they had received and verified a report that every tarball produced
under Solaris 2.0 contained fragments of the /etc/passwd file.* If this were
true, Mark thought, Sun and its customers were in terrible trouble: the pass-
word file was a fundamental part of every system’s security, the target of an
attacker’s “capture the flag” fantasy. Was Sun giving it away? Was their soft-
ware actually shipping out the password file to be deposited on archival
backup tapes, FTP and web sites, and countless CD-ROMs?

Jim had passed along a program he had put together to examine tar archive
files for /etc/passwd fragments (see Figure 1-4), so it didn’t take long for
Mark to confirm his report. Soon he was pulling vice presidents out of meet-
ings and mobilizing the troops—pulling the metaphorical red fire alarm
handle for all he was worth. What worried him was the possibility that some

* A “tarball” is an archive file produced by the Unix tar (Tape Archive) utility. Originally designed
to copy blocks of disk storage onto magnetic tape, it’s still in worldwide use today, the predomi-
nant method of transferring files between Unix systems.

16 | Chapter 1: No Straight Thing

devious, forward-looking mole might have inserted the vulnerability into the
Sun code tree, several years earlier, with the intent of reaping the customer’s
password files much later—after the buggy code had distributed thousands
of them around the Internet.

The story has a happy ending. Mark was able to track down the change that
introduced the bug and satisfy himself that it was inadvertent. Coinciden-
tally, beginning with this release, the password file was no longer critical to
system security: Solaris 2 introduced into Sun’s product the idea of the
shadow password file, so the /etc/passwd file no longer contained user pass-
words. He fixed the bug, built a patch, issued a security advisory (Sun Secu-
rity Bulletin 122, issued 21 October 1993), and breathed a sigh of relief. But
Mark has never shaken the concern that such a longitudinal attack may in
fact have been launched against some vendor many years ago and is silently
doing its work still today.

Let’s take a step back and look at some of the technical details of this partic-
ular bug. They may help illuminate the more general problems of writing
unsecure code.

Material was relayed in 512-byte blocks from a disk source to the archive
file. A read-a-block/write-a-block cycle was repeated over and over, until the
entire source file was saved. However, the buffer to which the disk source
block was read was not zeroed first by the programmer before the read. So
the part of the block that extended past the end of the file on the last read
did not come from the file, but rather from whatever was in the memory
buffer before the disk read.

The usual result from such an error would be random junk at the end of the
archive file. So why were fragments of the password file being written? It

Figure 1-4. The Sun tarball vulnerability

tar file

root:x:0:0:root:/root:/bin/tcsh
daemon:x:1:1:daemon:/usr/sbin:/bin/false
bin:x:2:2:bin:/bin:/bin/false
sys:x:3:3:sys:/dev:/bin/false
sync:x:4:65534:sync:/bin:/bin/false
games:x:5:60:games:/usr/games:/bin/false
man:x:6:12:man:/var/cache/man:/bin/false
lp:x:7:7:lp:/var/spool/lpd:/bin/false
mail:x:8:8:mail:/var/mail:/bin/false
news:x:9:9:news:/var/spool/news:/bin/false
uucp:x:10:10:uucp:/var/spool/uucp:/bin/false

Why Good People Write Bad Code | 17

turned out that the buffer to which the disk block was read happened to
already contain a part of the user password file—every time, without fail.
Why did this happen?

The buffer always held leftover information from the password file because,
as part of the read/write cycle, the tar program looked up some information
about the user running the program. The system call used to look up the
user information worked by reading parts of the /etc/passwd file into mem-
ory. The tar program obtained memory for this purpose from the system
“heap” and released it back to the heap when the check was done. Because
the heap manager also did not zero out blocks of memory when it allocated
them, any process requesting storage from the heap immediately after that
system call was executed would receive a block with parts of the /etc/passwd
file in it. It was a coincidence that tar made the system call just before allo-
cating the “read-a-block” buffer.

Why didn’t Sun notice this problem years before? In previous versions of the
software, the system call relating to the check of usernames happened much
earlier. Other allocations and deallocations of the buffer intervened. But
when a programmer removed extraneous code while fixing a different bug,
the security vulnerability was introduced. That program modification moved
the system call and the disk read closer together so that the buffer reuse now
compromised system security.

Once all this analysis was done, the fix was simple—from something like
this:

char *buf = (char *) malloc(BUFSIZ);

to something like this:

char *buf = (char *) calloc(BUFSIZ, 1);

Editing just a few characters (making the code now invoke the “clear allo-
cate” routine, which allocates a buffer and then zeroes it) “fixed” the prob-
lem and closed the vulnerability.*

The reason we tell this story in so much detail is to illustrate that critical
security vulnerabilities can often result not from coding or design mistakes,
but merely from unanticipated interactions between system elements that
by themselves are neither unsecure nor badly engineered.

In the next chapter, we’ll discuss architectural principles that (if followed)
could have rendered this particular bug harmless. Please note, however, that

* While this code “works,” it is probably not the best way to fix this problem. In Chapter 3, we’ll
display some alternatives in the discussion of security in “Performing Code Maintenance.”

18 | Chapter 1: No Straight Thing

a program with “harmless” bugs is not really secure. It’s more like a person
who has a deadly disease under control. We’ll discuss this issue in more
detail a little later on, when we talk about the effects of system complexity.

Effects of composition

Here is a related effect: application systems are often composed from mul-
tiple separate components, each of which may be perfectly secure by itself.
However, when components are taken together, they may create a hole
that can be exploited. A famous example of this class of problem was the
Unix “rlogin -l -froot” bug. It was caused by the composition of an rlogin
server from one source and a login program from another. The problem
was that the login program accepted preauthenticated logins if passed an
argument –f <username>, assuming that the invoking program had done
the authentication. The rlogin server program, however, did not know
about the -f argument, and passed a username of -froot on to the login pro-
gram, expecting it to do the authentication.

Neither program was wrong, exactly; but taken together they allowed any
remote attacker to log in as system administrator without authentication. In
other fields, the whole may be greater than the sum of the parts; in com-
puter security, the sum of the parts is often a hole.

As a bridge-playing expert that we know observed after a disastrous tourna-
ment result, “No one made any mistakes. Only the result was ridiculous.”

Other effects of extreme complexity

In addition, spontaneous security failures seem to occur from time to time.
Why does this happen? Consider the following explanation, from James
Reason’s masterful Human Error. He draws a surprising analogy:

There appear to be similarities between latent failures in complex technologi-
cal systems and resident pathogens in the human body.

The resident pathogen metaphor emphasizes the significance of casual fac-
tors present in the system before an accident sequence actually begins. All
man-made systems contain potentially destructive agencies, like the patho-
gens within the human body. At one time, each complex system will have
within it a certain number of latent failures, whose effects are not immedi-
ately apparent but that can serve both to promote unsafe acts and to weaken
its defense mechanisms. For the most part, they are tolerated, detected and
corrected, or kept in check by protective measures (the auto-immune sys-
tem). But every now and again, a set of external circumstances—called here
local triggers—arises that combines with these resident pathogens in subtle
and often unlikely ways to thwart the system’s defenses and bring about its
catastrophic breakdown.

Why Good People Write Bad Code | 19

We believe that it’s in the very complexity of the computer systems we engi-
neers work with that the seeds of security failure are sown. It’s not just that
an algorithm too complex for the skill of the eventual coder will engender
bugs. Perfect reliability—in this context, a complex system with no security
vulnerabilities—may not in fact be achievable. (We’ll leave that to the aca-
demics.) We certainly have never seen one; and between the two of us, we
have studied hundreds of complex software systems.

Ah, but the situation gets worse. Do you know any mistake-proof engi-
neers? We’ll look at the human side of failure in the next section.

Psychological Factors
Programmers are people, a fact that many security analysts seem to over-
look when examining the causes of vulnerabilities. Oh, everybody agrees
that “to err is human,” and it’s common to lament the fallibility of software
engineers. But we’ve seen little in the way of careful thinking about the
influence human psychology has on the frequency and nature of security
vulnerabilities.*

Risk assessment problems

Programming is a difficult and frustrating activity. When we or our col-
leagues perform a security analysis on software, we’ve noticed that (unless
we take special precautions to the contrary) the kinds of errors we find are
the ones we’re looking for, the ones we understand, and the ones we under-
stand how to fix. This factor (the tarball vulnerability we described earlier
illustrates it) is one of the best arguments we know for automated security
tests that require one to run and respond to a whole range of errors, both
familiar and unfamiliar.

Here’s another factor. When we ourselves do design work, we find that we
are uncomfortable thinking about some of our colleagues/coworkers/cus-
tomers/fellow human beings as crooks. Yet, that is exactly the mindset you
as a developer need to adopt. Never trust anyone until his trustworthiness
has been verified by an acceptably trustworthy source—that’s the rule.
Most of us find that to be an uncomfortable mental posture; and that’s a
real complication.

* If this subject interests you, we recommend that you follow up with the best text we know, Psy-
chology of Computer Programming by Gerald Weinberg. It’s a remarkable book, which has just
been reprinted for its 25th anniversary. There are a few other authors who have made a good start
on the study of human error as well. See the Appendix for details.

20 | Chapter 1: No Straight Thing

Another difficulty is that human beings tend to be bad at particular kinds of
risk assessment—for example, determining how hard you need to try to
protect passwords against snooping on your network. Your judgments are
going to be made using a brain design that seems to have been optimized
for cracking skulls together on an African savannah. However we got here,
our brains certainly haven’t been reengineered for Internet times. Your trust
decisions are going to be influenced by your own personal experiences with
various kinds of bad guys. The evaluations you make about the relative
likelihood of possible attacks will be influenced by physical proximity to
the attack sources. The impact of these outdated natural tendencies will be
felt in every design you produce.

This fact is one of the reasons we strongly recommend the
use of checklists, which can be prepared once (and specially
designed to concentrate on such perceptual problems) and
utilized ever after while in a more everyday frame of mind.

Mental models

During the design stage of a project, another of our most interesting human
foibles is most evident: the concept of psychological “set,” which is the
adoption of mental models or metaphors. It’s an abstract topic, for sure, and
most developers probably never consider it. But we think it bears a little
examination here.

All of us use mental models every day as an aid in executing complex tasks.
For example, when you’re driving a car, you are probably not conscious of
the roadway itself, of the asphalt and the paint and the little plastic bumps
you might find to help guide your way. Instead, you accept the painted lines
and the roadway contours, berms, and culverts as mental channels, con-
straining your actions and simplifying your choices. You can manage to
keep your car between two painted lines (that is, stay in your “lane”) more
easily than you could calculate the necessary angles and minute real-time
adjustments without them. Painted driving lanes are, in fact, an engineering
achievement that takes into account this exact human trait.

Designing a piece of software—putting a mental conception into terms the
computer can execute—is a complex mental activity as well. All the soft-
ware engineers we know make extensive use of mental models and meta-
phors to simplify the task.

In fact, one of the characteristics of an excellent engineer may be that very
ability to accept for the moment such a metaphor, to put oneself in the
frame of mind in which, for example, a “stream of input characters is what
the user is saying to us about what actions the program should take.” If you

Why Good People Write Bad Code | 21

take a second look at that last phrase, we think you will agree with us that
extensive metaphorical imagery comes very naturally when people are talk-
ing about programs.

Enter the bad guy. Attackers can often succeed by purposely looking only at
the asphalt, without seeing the lanes. To find security holes, think like an
alien: look at everything fresh, raw, and without socialized context. (See the
later sidebar “The Case of the Mouse Driver” for an example of this in
action.) Similarly, to avoid security vulnerabilities in your code, you must
develop the habit of suspending, from time to time, your voluntary immer-
sion in the program’s metaphors. You must train yourself (or be goaded by
checklists and aided by specialized tests) to examine the ones and zeroes for
what they are, surrendering their interpretation as identification numbers, or
inventory elements, or coordinates on a screen.

Ways of thinking about software

In order for your applications to stand up against a determined attack, you
will need to build in several layers of defense. You don’t want an exploit-
able weakness at any level. To weed those out, you will need a thorough
understanding of what a program is—of the worlds in which your software
lives.

Many of us have spent our whole working lives dealing with software. We
design, write, adapt, fix, and use the stuff. When we do, what are we manip-
ulating? You have probably gestured at a printout or a display of letters on a
screen, for example, and referred to that as a program. But what is a com-
puter program, really?

Here is a list of ways that you might think about the nature of software. We
invite you to try to imagine how you as an attacker might try to exploit a
program in each “plane of existence” we list. You can think of software as:

• An arrangement of abstract algorithms

• Lines of text on a sheet of paper or screen

• A series of instructions for a particular computer processor

• A stream of ones and zeros in computer memory, or stored on magnetic
or optical media

• A series of interlinked library routines, third-party code, and original
application software

• A stream of electronic and optical signals along electromechanical and
other kinds of pathways

• Running or residing on a host as an element of a hardware network

22 | Chapter 1: No Straight Thing

All of the above are fairly straightforward. But here are a few other ways that
may not be so straightforward. You’ll want to consider your application as:

• A set of “vertical” layers, such as transport, protocol, and presentation.
(These are elements that, in a way, can be thought of as being built on
top of one another.)

• A set of “horizontal” stages, such as firewall, GUI (Graphical User Inter-
face), business logic, and database server. (These are “peer” elements
that operate at the same level and communicate with each other.)

• A series of events that takes place in designated time slices and in a con-
trolled order.

• Executing at a disparate set of locations. Think about it: when an appli-
cation is running, where are the user, the code itself, the host, the server,
the database, the firewall, and the ISP located? They can all be in differ-
ent locations, spread around the world.

It’s remarkable to us, but true, that we have seen successful attacks based on
each of the points of view listed in this section! It is mind-bending consider-
ations like these that make effective application security such a tremendous
challenge.

Here are a couple of examples of how some of these unusual considerations
can affect security. On the “good guy” side, one of the most intriguing secu-
rity patents of recent years uses the physical location of a person (as indi-
cated by a global positioning system device) to help decide whether that
person should be allowed to log into a system. This approach uses a charac-
teristic that is seldom considered—precise physical location—to enhance
the accuracy of authentication and authorization decisions. On the other
hand, some of the most difficult software vulnerabilities we’ve ever had to
fix had to do with subtle timing effects involving events—just a few millisec-
onds apart—that could occur in two slightly different orders.

For an illustration of how “mental” aspects of software can lead to vulnera-
bilities, see the following sidebar.

Real-World Factors
Enough theory. Let’s come back to the real world now, and consider for a
moment how software is actually produced. We’ll start with a few points
that are sure to offend some of our colleagues.

The source of our source code

Do you know who wrote most of the software the Internet runs on? Ama-
teurs originally wrote many of the systems programs that have the worst

Why Good People Write Bad Code | 23

vulnerabilities. (Don’t worry, we’ll excoriate the professionals soon enough.)
One reason for this is that Berkeley undergraduates first developed much of
Unix—in particular, the TCP/IP networking subsystem. Thus, we owe many
of the Internet’s design and architectural decisions, and a surprising amount
of code, to a collection of students of widely varying abilities using tech-
niques that were current in the mid-1970s!*

The Case of the Mouse Driver
One of our favorite security bugs helps illustrate how attackers think outside
the programming metaphors. In this case, an attacker found that he was able
to take control of a Unix workstation by manipulating a piece of system soft-
ware known as a mouse driver. The designer of this program certainly never
intended it to be invoked by a real user. It was called as part of a chain of exe-
cution by another program. Still, probably because convenient library rou-
tines were available for the purpose—or perhaps because it made it easy to
debug the program during development—input to the driver was supplied in
the form of parameters on a command line. The job of the mouse driver was
to position the cursor on the screen in a spot corresponding to movements of
the mouse. The X and Y coordinates at which the cursor was to be positioned
were supplied as integral values from, say, 0 to 1023. In normal use, the com-
mand line provided by the invoking screen-control software would look
something like “driver 100 100”.

The program, because it needed to manipulate the screen cursor, was
installed with high system privileges. And this design worked perfectly well
for years, until one day someone with malevolent intent found a way to sub-
vert it. By invoking the program directly and by supplying X and Y coordi-
nates that were so large as to be meaningless, the manipulator was able to
deliberately overflow the buffers allocated for the coordinates and use the
program’s privileges to take control of the system.

This vulnerability came into existence precisely because the engineer success-
fully “channelized” his thinking. The attacker succeeded by ignoring the pur-
pose for which the program was designed, rejecting the metaphor underlying
the design and instead looking straight at the bits. It’s a skill to be cultivated
by those who want to understand how software can be subverted, though,
and as we mentioned, it’s a skill that’s perhaps antithetical to the skills that
facilitate software design itself.

* Professor Eugene H. Spafford describes the history well in “UNIX and Security: The Influences of
History,” Information Systems Security, Auerbach Publications; 4(3), pp. 52-60, Fall 1995.

24 | Chapter 1: No Straight Thing

The democratization of development

The problem of amateurs writing code is not simply a historic one. Much of
today’s new software is being written by folks with no training at all in soft-
ware engineering. A good example is the fact that many CGI scripts used
extensively on the Net (some on which other folks have built entire busi-
nesses) have been clearly thrown together by people with no background at
all in software. (That is, in fact, one of the design goals of HTML.) Don’t get
us wrong. We think it’s terrific that practically anybody with the will to
learn the basics can put together an online service, or a library, or a form-
based database. But there is a cost.

Of course, we don’t really believe that most of the security problems on the
Net arise because gross amateurs are writing the programs. We profession-
als deserve most of the blame. So we’re going to shift gears again and look at
a few reasons why, even with the best training and the best intentions, doing
software engineering securely in the real world remains a very challenging
undertaking.

Production pressures

Almost all software is produced under some schedule pressure. Software
engineers don’t work in a vacuum—even if they care passionately about
secure coding and work not for profit-seeking software houses, but as part
of an open source effort. Testing time is limited. The chance to research how
someone else has approached a problem may not come before it’s time to
freeze and ship. The real world impinges, sometimes in unpredictable ways.

The plight of the software engineer who wants to produce secure code is
never easy. Sometimes we have to give up on the best possible result, and
settle for the best result possible. And sometimes that best result (from the
point of view of the individual engineer, or his or her management) has or
may have security weaknesses.

Just secure enough

It is often hard for people who understand technical security issues, but have
not worked as full-time software engineers, to understand how companies
comprised of their colleagues can produce deeply flawed and insecure
products.* One of the hopes we have for this book is that it will provide

* We have in mind comments such as one by Karl Strickland, a convicted computer attacker and
member of the “8LGM” group, which posted exploit scripts on the Internet in the late 1990s. “I
don’t see the problem. One bug fix, one person. Two bugfixes [sic], two people. Three bugfixes
[sic], three people, working simultaneously on different bugs. How hard can that be?” —Usenet
comp.security.unix discussion thread, May 1994.

Why Good People Write Bad Code | 25

some insight here—not by way of making excuses for anyone, but rather by
helping to foster a level of understanding that can help remove the root
causes of these problems.

Suppose that you are a software vendor in a competitive marketplace. Your
profit margins are tight, and your marketing team believes that security is
not a deciding factor for customers in your product space. In this kind of
environment, wouldn’t you be likely to produce software that is “just secure
enough”? Secure enough, we mean, not to alienate the majority of your cus-
tomer base.

A friend of ours was “security coordinator” for one of the major Internet
software producers. Often buttonholed by customers at security confer-
ences and asked questions like, “When are you guys going to stop shipping
this crap?” he claims the answer he is proudest of was, “Sometime soon after
you folks stop buying it.” It’s a point to consider.

Let’s assume that the vendor’s goal is to expend minimal resources to fore-
stall show-stopping vulnerabilities, prevent loss of sales, and keep the com-
pany’s name out of the news. What are some other factors that keep
corporations from investing heavily in security quality?

The main reason, we think, is that whatever time and effort is spent on find-
ing, verifying, and fixing security bugs means that fewer engineers are avail-
able for adding new features.

A second reason may be that some companies act as if downplaying, deny-
ing, or delaying acknowledgment of security vulnerabilities will give them an
edge over the competition. Think about it. If you were the CEO and no one
was forcing you to face up to the security flaws in your products, wouldn’t
you be focusing on positive angles, on new features and services that bring
in the revenue? You would overlook flaws in your product if you could get
away with it, wouldn’t you? Most of us would at least be tempted (and we’re
not battered about by stockholders and litigation-wary attorneys).

The tragedy of the commons

We’d like to think that, even if marketing factors (and common decency)
don’t suffice, considerations of citizenship and business ethics might com-
pel corporate software producers to clean up their act in security matters.
Unfortunately, it doesn’t seem to work that way. This might be explained by
the so-called “tragedy of the commons,” an idea first brought to wide atten-
tion in a seminal article by Garrett Hardin in 1968:

The tragedy of the commons develops in this way. Picture a pasture open to
all. It is to be expected that each herdsman will try to keep as many cattle as
possible on the commons.

26 | Chapter 1: No Straight Thing

As a rational being, each herdsman seeks to maximize his gain…The rational
herdsman concludes that the only sensible course for him to pursue is to add
another animal to his herd. And another...But this is the conclusion reached
by each and every rational herdsman sharing a commons. Therein is the trag-
edy. Each man is locked into a system that compels him to increase his herd
without limit—in a world that is limited.*

In our context, the Internet is the common resource. Each vulnerability is a
kind of pollution. Adding one more bug to the world’s security burden is in
the shortsighted economic interest of each company. So long as fixing bugs
will divert resources that can be used to individual advantage elsewhere,
profit-seeking companies will not invest in wholesale secure coding prac-
tices. As Hardin observed, “The inherent logic of the commons remorse-
lessly generates tragedy.”

A Call to Arms
You probably knew that the security of Internet software was a mess before
you started this book. How do we extricate ourselves?

* See Garrett Hardin, “The Tragedy of the Commons,” Science, 162(1968):1243-1248.

The Lesson of Y2K
Many security experts, including your authors, have lobbied for years for
“blanket code sweeps” for security vulnerabilities at some of the big software
housesa. A careful one-time effort would be no substitute for the revolution
in secure coding that seems to be called for, but it would be a giant step for-
ward. Why do you think such pleas have always failed? A similar effort for the
remediation of Y2K bugs succeeded notably.

We can think of three reasons:

1. In the case of Y2K, there was a definite, unchangeable deadline.

2. The worldwide focus on possible Y2K catastrophes meant that any
company that failed to fix their code was guaranteed a mass of highly
unfavorable headlines.

3. In the case of security, it’s hard to see where the one-time budget allo-
cation for the sweep would come from. Hope springs eternal, of course!

a Again, see Dr. Eugene H. Spafford’s article, “UNIX and Security: The Influences of History,” as
previously cited.

A Call to Arms | 27

In addition to advocating the widespread adoption of the techniques and
practices described in this book, we also call for advances in three particular
areas: education, standards, and metrics.

Education
Clearly, we must do a better job of educating engineers about the princi-
ples and techniques of secure coding.*

We must also ensure that the public understands the demonstrably poor
security of Internet software today, and that the various facets of gov-
ernment comprehend the magnitude of the disasters that can strike us if
we don’t make drastic improvements.

We also need to convince the press that those who attack systems are
not geniuses; they’re merely criminals. It would help, too, if the media
would stop publicizing dramatic names for the various vulnerabilities
and exploitation programs, such as (to invent an example) the “Red
Slammer.” Will it take a decade or more of severe or deadly incidents to
change public attitudes about computer attackers?

Standards
Many people have compared the software vulnerability situation today
to the carnage endured before the advent of mandatory seat belts in pri-
vate automobiles.

Having reached the point where we agree, we now call for the develop-
ment of true secure coding standards—standards that can be used by
companies, governments, and consumers to promote prosperity and
ensure our safety. It is the only way we can see to get software vendors
to invest in quality.† If every company is forced to participate, none will
be able to make the excuse that they can’t afford to divert resources
from more competitive pursuits.

Metrics
A critical step in the widespread adoption of safe programming tech-
niques and standards is the development of competent security metrics.
Until we can apply an accepted measurement tool to two programs (or
two versions of the same program) and determine which has fewer secu-
rity vulnerabilities, we can expect very slow progress in this field.

* Professor Spafford told Congress the state of security education means we are facing “a national
crisis.” See “One View of A Critical National Need: Support for Information Security Education
and Research,” 1997.

† To quote Garrett Hardin again, “Ruin is the destination toward which all men rush, each pursu-
ing his own best interest in a society that believes in the freedom of the commons. Freedom in a
commons brings ruin to all.”

28 | Chapter 1: No Straight Thing

Until we have reliable security metrics, consumers will lack the means to
reward manufacturers who produce good code and punish those whose
products reek with vulnerabilities. Governments will lack the confi-
dence to develop standards, and citizens may never be sure that they are
justified in goading government to enforce the laws and requirements
that do exist. Engineers will still struggle to refine their own techniques,
and hesitate to condemn their colleagues.*

Toward this end, you’ll find in the final chapter of this book a discussion
of some of the automated tools and techniques available today that can
help you flag and fix security bugs. We also discuss briefly a simple script
we’ve used for the rudimentary “security scoring” of application software.

Summary
In this first chapter, we hope we’ve challenged you with some new ideas
about security vulnerabilities. We particularly hope that you may now con-
sider that the blame for security vulnerabilities belongs, to some degree, to
all of us who buy and use the seriously flawed programs available today.

This point of view does not minimize or try to mitigate the responsibility of
software producers for security quality. They should be held to the highest
standards and hung out to dry if they fail. But it does in fact “take two to
tango,” and customers (particularly, the U.S. government, the biggest soft-
ware customer, so far as we know, in the world) bear some responsibility to
demand secure software.

Those among us who produce software, of course, have a special responsi-
bility and a unique opportunity to improve matters. Our discipline has not
reached the state of understanding and sound practice exemplified by those
bridge builders shown on the cover of this book, but the folks driving their
virtual vehicles over our structures rely on us nevertheless to keep them safe.

In Chapter 2, we’ll exhibit the most important architectural principles and
engineering concepts you can employ to make your software as secure as
possible. In that chapter, we’ll try to pass along some distilled security wis-
dom from the generation of coders that built the Internet.

* Lord Kelvin, the great engineer who formulated the absolute (Kelvin) temperature scale and engi-
neered the laying of the transatlantic cable, said: “I often say that when you can measure what
you are speaking about and express it in numbers, you know something about it. But when you
cannot measure it, when you cannot express it in numbers…you have scarcely in your thoughts
advanced to the state of science, whatever the matter may be.”

Summary | 29

Questions
• Have you ever written a program section with a security hole? Really?

How do you know? And, if you are sure you haven’t, why haven’t you?

• Do programmers writing code today know more about security than
programmers writing code 30 years ago?

• If you accept the principle of writing code that is “just secure enough”
for your own applications, do you think it is socially responsible for
software vendors to do the same?

• Visualize one of your favorite programs. What is it? Are you seeing a
series of lines on a computer screen or piece of paper? Or is the “pro-
gram” the series of machine-language instructions? Is it perhaps the
algorithm or heuristic, or maybe the very input-to-output transforma-
tions that do the useful work? Now consider: in which of these various
forms do most vulnerabilities appear? Also, will the same bug-fighting
techniques succeed in all of these instantiations?

• Which are more dangerous: cars without seat belts or Internet-capable
programs with bad security? If the former, for how long will that be
true? Is that within the lifetime of software you are working on, or will
work on some day?

• Suppose you were responsible for the security of a web server. Which
would make you feel safer: keeping the server in a room around the
corner from your office or keeping it in another office building (also
owned by your company) around the world? Why? Would it make a
difference if you “knew”—had physically met—one or more workers in
that remote building?

• Are the people you know more trustworthy than those you don’t?

• Are you and your friends better engineers than we are?

• What are you doing to make the software you use more secure?

• Can you think of a safe way for software vendors to ensure that their
customers install security patches? Should the process be automated?
Should vendors be launching patch-installation worms that exploit a
vulnerability in order to install a fix for it?

• Should software vendors be shielded from product liability?

