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ABSTRACT 
 
Nowadays, proactive password checking algorithms are based 
on the philosophy of the dictionary attack, and they often fail to 
prevent some weak passwords with low entropy. In this paper, a 
new approach is proposed to deal with this new class of weak 
passwords by (roughly) measuring entropy. A simple example is 
given to exploit effective patterns to prevent low-entropy 
passwords as the first step of entropy-based proactive password 
checking.  
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1 INTRODUCTION 
 

Password security is an old problem. Due to the limitation of 
human memory, people are inclined to choose easily guessable 
passwords (e.g. phone numbers, birthdays, names of family or 
friends, or words in human languages) that might lead to severe 
security problems. Though it was commonly believed that 
secure passwords were difficult to remember and easy-to-
remember passwords were insecure, a recent experiment [14] 
showed with hard data that passwords based on mnemonic 
phrases could provide both good memorability and security, but 
non-compliance with password selection advices was a main 
threat to password security.  

Proactive password checking has been a common means to 
enforce password policies and prevent users from choosing 
easily guessable passwords in the first place. When a user 
chooses a password, a proactive checker will determine whether 
his password choice is acceptable or not, and this proactive 
checking is done online and the user will be immediately 

responded the result. Among common approaches to improving 
password security by selecting good passwords, such as user 
education, program-controlled password generation and reactive 
password checking (i.e., system administrators periodically run 
password cracking programs to search weak passwords), 
proactive password checking has been widely regarded as the 
best [2, 3, 6, 11]. 

In 1999, Wu [13] reported a password experiment done in a 
Kerberos setting where a proactive password checker was used. 
Wu recommended strong password authentication protocols 
such as EKE [1], SRP [12] as an alternative approach to 
improving password security, since the checker appeared not to 
help that much in his experiment but those password 
authentication protocols appeared to eliminate the threat of 
offline dictionary attack on passwords. As far as we know, this 
is the most negative criticism of proactive password checking so 
far. Wu’s claim of inefficacy of proactive password checking, 
however, is unconvincing, since the poor experimental result 
shown in his paper might and does simply suggest that the 
proactive checker used in his experiment was not effective.  

On the other hand, although strong password authentication 
protocols utilize cryptographic technologies to generate strong 
session keys from passwords so that users may use weak 
passwords in some circumstances, they are not the “silver 
bullet” for password security. Firstly, these methods are 
expensive, and are not widely deployed in fielded systems. It 
also appears impossible to apply this technique in every place 
where the password mechanism is needed. Secondly, they are 
complex and error-prone. Security protocols are notoriously 
difficult to be correct, and subtle security flaws of protocols 
have been published from time to time. There are already some 
attacks against password authentication protocols, e.g. [10], 
published in the literature. Moreover, nobody is sure whether 
those authentication protocols are secure as claimed or not 
before they are rigorously proved. Most importantly, the party 
that stores the password file can still do offline dictionary attack 
as usual. Although strong password authentication protocols do 
amplify the search space of a weak password to that of a much 
stronger cryptographic key, this amplification is meaningful 
only when an attacker does dictionary attack against the key. 
The threat of offline dictionary attack, launched directly on the 
password file, is still there. For example, there might be an 
internal attack. Moreover, password authentication protocols are 
vulnerable to either online dictionary attack or denial of service 
attack. If these protocols are designed to be resilient to the 

 



former attack, then they are unavoidably vulnerable to the latter 
attack, and vice versa.  

Password security is not a problem that can be solved only by 
technical means. Human factor is also very important1. In case 
users become complacent due to the (superficial) technical 
advantage of strong password authentication protocols - the 
advertisement in many papers is that a user can use “weak”, 
“memorable” passwords - so that they choose their names or 
user IDs, phone numbers or whatever is simple as their 
passwords, it is not impossible for an attacker to easily guess 
them after a few tries in an online dictionary attack.  

Therefore, in places where strong password authentication does 
or does not fit, good password selection policies enforced by 
proactive checking is still one of desirable methods to improve 
password security in practice. From Wu’s experiment, we also 
see a great and urgent demand of effective proactive password 
checking tools in real life. Nevertheless, proactive password 
checking is not a perfect technique. In this paper, we try to 
address a common shortcoming of the state of the art of 
proactive checking and propose a remedy.  

 

2 PROACTIVE PASSWORD 
CHECKING: STATE OF THE ART 

 

Theoretically, it is easy for proactive password checking to 
block all possible weak passwords. It might, for example, be 
enough to enforce such a simple password policy: each 
password has no less than eight characters, among which there is 
at least one lower case character, at least one uppercase 
character, at least one numerical character and at least one 
punctuation character, and there is no character occurring more 
than twice. Nevertheless, it is impractical to do that in real life, 
since passwords complying with such a policy might be too 
difficult to be memorized. There are always some trade-offs 
between security and user convenience for password choice. As 
a basic assumption, proactive password checking algorithms 
typically do not enforce extremely strict policies but allow users 
to choose “good enough” passwords, though the criteria of 
“good enough” might vary in different circumstances.  

2.1 Dictionary Attack: the Basis of Current 
Proactive Password Checking 

 

                                                                 
1 When implementing proactive password checking, it is also 

crucial to consider human factor, organizational or social 
issues. For example, users should be given good feedback on 
why passwords fail the test, and how they can choose a better 
one (now, they can be instructed to choose mnemonic phrase 
based passwords as suggested by [14]). In case passwords are 
rejected without appropriate explanation and further 
instruction, users may dislike the system and try to undermine 
it. The detailed discussion of this is, however, beyond the 
scope of this paper. 

When a hacker cracks passwords, he can use the following two 
methods: 1) to do a dictionary attack, which tries each of a list 
of word and other possible weak passwords, and simple 
transformations such as capitalizing, prefixing, suffixing or 
reversing a word as a candidate until the hashed value of the 
candidate matches a password hash; and 2) to launch a brute 
force attack to search the whole key space, which is commonly 
huge. Hackers, however, always prefer to use dictionary attack, 
because it has proved to be very effective in history [6]. 
Following a similar thinking, current proactive password 
checkers are based on the dictionary attack. They check each 
user-chosen password candidate against a dictionary of weak 
passwords. If a candidate matches a dictionary item, or anyone 
of its variants that are generated by common transformations, 
then the candidate is an unacceptable password and rejected. 

For example, crack [7] is one of the most popular password-
cracking software. Although it also supports the brute force 
attack, it has been far more used as a dictionary-based cracking 
tool. Utilizing a similar dictionary-based algorithm used by 
crack, its designer also implemented cracklib [8], a proactive 
password-checking library, which has been integrated into some 
password systems. Armed with a same dictionary, a cracklib-
supported system can prevent all weak passwords that can be 
guessed by crack.   

In order to cover as many weak passwords as possible, a huge 
dictionary is commonly required for this dictionary-based 
proactive password checking. The dictionary file may occupy 
tens of megabytes or even more storage space, and it may take a 
very long time to search the huge dictionary. Consequently, an 
essential research problem has been how to efficiently store and 
search the dictionary. The search speed is even a more important 
concern than storage space, because proactive password 
checking needs to be done online in real-time while a user waits 
for an immediate response from the system. 

The cracklib v2.7 included a dictionary of 1.4 million words, 
which had a raw size of around 15MB, and the whole package 
of all files occupied around 7MB, which was around 45% of 
original size. It used a modified-DAWG (Directed Acyclic Word 
Graph) compression algorithm, which preprocessed sorted lists 
of words to remove redundancy and make compression tools 
like gzip more effective. A gzipped-DAWG dictionary was 
typically about 50% of the size of the gzipped non-DAWGed 
dictionary [8]. In order to improve search speed, cracklib used 
an index file to access dictionary words, and kept a table to 
assist binary searching. In summary, the algorithms used by 
cracklib to optimize dictionary storage and checking speed were 
very intuitive, and they only worked efficiently when the 
dictionary file was of a modest size. 

Researchers have been looking for good algorithms that could 
achieve both fast checking speed and effective dictionary 
compression at the same time. For example, Spafford used 
Bloom filters [4] in his OPUS system [11]. Davies and Ganesan 
used trigrams and a Markov model in their BApasswd [5]. The 
state-of-the-art of proactive password checking is ProCheck [2, 
3], which uses decision-tree techniques to achieve high 
dictionary compression (up to 1000:1) as well as a fast checking 
speed. In its current implementation, a decision tree classifier 
with the size of only 24 KB is generated from a 28 MB 
dictionary file of 3,215,846 words. The proactive checking 



algorithm only searches the small classifier to determine whether 
a password is acceptable or not. As far as we know, ProCheck 
provides the fastest checking speed and best compression of a 
huge dictionary. 

When a dictionary used by a proactive password checker does 
not match that used by a cracker, it is likely that the checker will 
fail to prevent some weak passwords, which can be successfully 
guessed by the cracker afterwards however. Although this 
appears to be an inherent difficult-to-solve defect for password 
checking, the ProCheck technique makes it possible for security 
defenders to arm themselves with dictionaries as huge as they 
like, and thus significantly minimize the chance window of bad 
guys. 

2.2 A Common Shortcoming 
 

Even though a word in a live language is extremely difficult to 
memorize, or seldom used and thus strange to the mind of most 
people so that it appears to be secure, it is still a weak password 
if a proactive password checker includes that word in its 
dictionary file. On the contrast, some really weak passwords 
with low entropy could be considered to be “good” by proactive 
password checkers. This is a common shortcoming within 
current proactive password checking. Wu  [13] also observed 
this. 

In our experiment, all existed password checkers including 
ProCheck failed to catch weak passwords like a198b53, which 
are of low entropy. Ironically, 12345abc could be rejected as a 
weak password by some checkers, but 12a3b4c5 would be 
accepted as a good one by all checkers. Similarly, some checkers 
could easily reject 12345ab, but failed to catch 12a34b5. 
This kind of failure comes from the rational: 1) the common 
practice for password management is always based on dictionary 
attack to search weak passwords, and those passwords that 
cannot be cracked by dictionary-based attacks are usually 
considered to be secure; and consequently, 2) current proactive 
checkers mainly (if not totally) rely on dictionary-based 
checking, and most low-entropy passwords are ignored.  

These low-entropy passwords constitute a new class of weak 
passwords, and need to be properly addressed.  

3 ENTROPY BASED PROACTIVE 
PASSWORD CHECKING: AN 
EXAMPLE 

 

We propose to use entropy based proactive password checking 
to detect the abovementioned new class of weak passwords, and 
allow only high entropy passwords. Moreover, we propose to 
dig out effective patterns of weak passwords with low entropy as 
the first step of performing entropy-based proactive checking.  

Until now, a few password patterns have been exploited to 
recognize weak passwords by current password checkers. For 
example,  

• Minimum password length;  

• All digits or all punctuation characters; 

• Calendar dates or phone numbers;  

• Adjacent keys, such as 12345ab, 12345abc, 
ehm12345, abcdefgh. 

Nonetheless, those used patterns are of a very limited number 
and type, and they cannot tackle many other weak passwords 
with low entropy. On the other hand, the simple password policy 
described in the beginning of Section 2 leads to a too strong 
pattern to be acceptable. In this section, we take 7-character 
alphanumeric password as an example of seeking for weak 
patterns of low entropy passwords. We deliberately choose 7-
character case-insensitive alphanumeric password as our 
example, because they are widely used in real life, though many 
systems like Unix and Windows NT support case sensitive 
passwords. Empirical data showed that users generally avoided 
using the shift key, and 86% passwords cracked in Wu’s 
experiment could be typed without it [13]. This might partially 
explain that. On the other hand, the password scheme of Novell 
Netware is case insensitive, so there are more passwords that fall 
into this category in a Netware environment. 

3.1 Different Distribution Areas for 7-
Character Passwords 

 

We denote the permutation operation by P(). Consider a 7-
character alphanumeric password. It may reside in one of the 
eight exclusive distribution areas defined as follows. 

1). P(7a):  all 7 characters are alphabetic 

2). P(6a+1n): 6 alphabetic and 1 numeric 

3). P(5a+2n): 5 alphabetic and 2 numeric 

4). P(4a+3n): 4 alphabetic and 3 numeric 

5). P(3a+4n): 3 alphabetic and 4 numeric 

6). P(2a+5n): 2 alphabetic and 5 numeric 

7). P(1a+6n): 1 alphabetic and 6 numeric 

8). P(7n):      all 7 characters are numeric 

Table 1 shows the search space and cost of each of these eight 
areas. The search cost is benchmarked with an attacking speed 
of 4.7µs per try, which is measured for the Novell Netware 
password hash algorithm on a Pentium 333 Windows NT 
machine. 

Among these eight areas, it takes the highest percentage of the 
full search (36^7) to cover the P(5a+2n) area, which is an area 
with the highest entropy for a 7-character alphanumeric 
password, or the most secure area in terms of brute force attacks. 
Similarly, P(6a+1n) is the second strongest area. However, 
either P(7n), P(1a+6n) or P(2a+5n) is a relatively weak area 
where passwords are with low entropy. As shown in Table 1, 
there is a clear division between high and low entropy areas. We 
use a dashed line to mark the division. 

3.2 Different Pattern Distributions for 7-
Character Passwords 

 

In this section, we look into the distribution of different 
password patterns in the P(7a), P(6a+1n), P(5a+2n) and 



P(4a+3n) areas. Table 2 ~ 5 list each possible password pattern 
in each area, along with its search cost as a percentage of this 
area and of the whole search space of 36^7. In each of these 
tables, there is a clear division that separates strong and weak 
password patterns in that area. We also use a dashed line to 
show the division boundary in each table. 

 

 

 
 

 

Table 1. Different distribution areas for 7-character passwords 
 

Areas Search space = Value Percentage Cracking Time 

    minutes hours days 

Full 36^7 78,364,164,096 100.00% 6,138.53 102.31 4.26 

       

P(7a) 26^7 8,031,810,176 10.25% 629.16 10.49 0.44 

P(6a+1n) (C
1

7
*10) * 26^6 21,624,104,320 27.59% 1,693.89 28.23 1.18 

P(5a+2n) (C
2

7
*10^2)*26^5 24,950,889,600 31.84% 1,954.49 32.57 1.36 

P(4a+3n) (C
3

7
*10^3)*26^4 15,994,160,000 20.41% 1,252.88 20.88 0.87 

P(3a+4n) (C
4

7
*10^4)*26^3 6,151,600,000 7.85% 481.88 8.03 0.33 

P(2a+5n) (C
5

7
*10^5)*26^2 1,419,600,000 1.81% 111.20 1.85 0.08 

P(1a+6n) (C
6

7
*10^6)*26 182,000,000 0.23% 14.26 0.24 0.01 

P(7n) 10^7 10,000,000 0.01% 0.78 0.01 0.00 

       

Total:  78,364,164,096 100.00% 6,138.53 102.31 4.26 

Speed(s/try): 4.70E-06      

 

 

 
 
 
 
 
 
 
 
 

 

 

 



Table 2. Pattern Distributions in the P(7a) Area 
 

Patterns Search space = Value 
Percentage 

(Value/P(7a)) 
Cost 

(Value/36^7) 

     

All for P(7a) 26^7 8,031,810,176 100.00% 10.25% 

     

1. No repeated character  P
7

26
 3,315,312,000 41.28% 4.23% 

     

2. Only one repeated character     

    One occurs twice C
2

7
* P

6

26
  3,481,077,600 43.34% 4.44% 

    One occurs three times C
3

7
* P

5

26
  276,276,000 3.44% 0.35% 

    One occurs four times C
4

7
* P

4

26
  12,558,000 0.16% 0.02% 

    One occurs five times C
5

7
* P

3

26
 327,600 0.00% 0.00% 

    One occurs six times C
6

7
* P

2

26
 4,550 0.00% 0.00% 

    One occurs seven times C
7

7
* 26 26 0.00% 0.00% 

     

3. Two repeated characters     

    each occurs twice  C
5

26
*10*(7! / (2!)^2) 828,828,000 10.32% 1.06% 

    one twice, another three times  C
2

7
*C

3

5
* P

4

26
  75,348,000 0.94% 0.10% 

    one twice, another four times  C
2

7
*C

4

5
* P

3

26
 1,638,000 0.02% 0.00% 

    one twice, another five times  C
2

7
* P

2

26
 13,650 0.00% 0.00% 

    each occurs three times  C
3

26
*3*(7! / (3!)^2) 1,092,000 0.01% 0.00% 

    one three, another four times  C
3

7
* P

2

26
  22,750 0.00% 0.00% 

     

4. Three repeated characters     

    each occurs twice  C
4

26
*4*(7! / (2!)^3)  37,674,000 0.47% 0.05% 

    two occurs twice, another three times  C
3

26
*3*(7! / (2!2!3!)) 1,638,000 0.02% 0.00% 

     

 Total: 8,031,810,176 100.00% 10.25% 

 

 



 

Table 3. Pattern Distributions in the P(6a+1n) Area 
 

Patterns Search space = Value 
Percentage 

(Value/P(6a+1n)) 
Cost 

(Value/36^7) 

     

All for P(6a+1n) (C
1

7
*10) * 26^6 21,624,104,320 100.00% 27.59% 

     

1. No repeated alphabetic (C
1

7
*10)* P

6

26
 11,603,592,000 53.66% 14.80% 

     

2. Only one repeated alphabetic     

    one occurs twice (C
1

7
*10)*(C

2

6
* P

5

26
) 8,288,280,000 38.33% 10.57% 

    one occurs three times (C
1

7
*10)*(C

3

6
* P

4

26
) 502,320,000 2.32% 0.64% 

    one occurs four times (C
1

7
*10)*(C

4

6
* P

3

26
) 16,380,000 0.08% 0.02% 

    one occurs five times (C
1

7
*10)*(C

5

6
* P

2

26
) 273,000 0.00% 0.00% 

    one occurs six times (C
1

7
*10)*26 1,820 0.00% 0.00% 

     

3. Two repeated alphabetic     

    each occurs twice (C
1

7
*10)*(C

4

26
*C

2

4
* 6! / (2! * 2!)) 1,130,220,000 5.23% 1.44% 

    one twice, another three times (C
1

7
*10)* (C

2

6
*C

3

4
* P

3

26
) 65,520,000 0.30% 0.08% 

    one twice, another four times (C
1

7
*10)* (C

2

6
* P

2

26
) 682,500 0.00% 0.00% 

    Each occurs three times  (C
1

7
*10)* (C

2

26
* 6! / (3! * 3!)) 455,000 0.00% 0.00% 

     

4. Three repeated alphabetic     

    Each occurs twice (C
1

7
*10)* (C

3

26
* 6! / (2! * 2! * 2!))  16,380,000 0.08% 0.02% 

     

 Total: 21,624,104,320 100.00% 27.59% 

 

 

 
 
 
 
 



 
Table 4. Pattern Distributions in the P(5a+2n) Area 

 

Patterns Search space = Value 
Percentage 

(Value/P(5a+2n)) 
Cost 

(Value/36^7) 

     

All for P(5a+2n) (C
2

7
*10^2)*26^5 24,950,889,600 100.00% 31.84% 

     

1. No repeated alphabetic (C
2

7
*10^2)* P

5

26
 16,576,560,000 66.44% 21.15% 

     

2. Only one repeated alphabetic     

    one occurs twice (C
2

7
*10^2)*(C

2

5
* P

4

26
) 7,534,800,000 30.20% 9.62% 

    one occurs three times (C
2

7
*10^2)*(C

3

5
* P

3

26
) 327,600,000 1.31% 0.42% 

    one occurs four times (C
2

7
*10^2)*(C

4

5
* P

2

26
) 6,825,000 0.03% 0.01% 

    one occurs five times (C
2

7
*10^2)*26 54,600 0.00% 0.00% 

     

3. Two repeated alphabetic     

    each occurs twice (C
2

7
*10^2)*(C

3

26
* 3 * 5! / (2! * 2!)) 491,400,000 1.97% 0.63% 

    one twice, another three times (C
2

7
*10^2)*(C

2

5
* P

2

26
) 13,650,000 0.05% 0.02% 

     

 Total: 24,950,889,600 100.00% 31.84% 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5. Pattern Distributions in the P(4a+3n) Area 

 

Patterns Search space =Value 
Percentage 

(Value/P(4a+3n)) 

Cost 

(Value/36^7) 

     

All for P(4a+3n) (C
3

7
*10^3)*26^4 15,994,160,000 100% 20.41% 

     

1. No repeated alphabetic (C
3

7
*10^3)* P

4

26
 12,558,000,000 78.52% 16.03% 

     

2. One repeated alphabetic     

    one occurs twice (C
3

7
*10^3)*(C

2

4
* P

3

26
) 3,276,000,000 20.48% 4.18% 

    one occurs three times (C
3

7
*10^3)*(C

3

4
* P

2

26
) 91,000,000 0.57% 0.12% 

    one occurs four times (C
3

7
*10^3)*26 910,000 0.01% 0.00% 

     

3. Two repeated alphabetic      

    each occurs twice  (C
3

7
*10^3)*(C

2

26
*4! / (2! * 2!)) 68,250,000 0.43% 0.09% 

     

 Total: 15,994,160,000 100.00% 20.41% 

 

 

3.3 A Simple Checking Algorithm 
 

The above analysis shows that there are clear divisions both 
between strong and weak password areas, and between strong 
and weak password patterns. It is obvious that a password that 
falls into the following two categories must be with relatively 
low entropy: 

• Passwords in the P(7n), P(1a+6n), or P(2a+5n) area, 
i.e., passwords that have 5 or more numerical 
characters; 

• Passwords that are in the P(7a), P(6a+1n), P(5a+2n) 
or P(4a+3n) area and have two or more repeated 
alphabetic, or one alphabetic occurring three or more 
times.  

Traditionally, brute force attack ignored these divisions and 
aimlessly searched each candidate in the full password space. 
That is the reason that it couldn’t efficiently crack weak 
passwords like ca12612. If the search order of a brute force 
attack is weighted by entropy, and low-entropy parts are a first 
priority, then low-entropy passwords are likely cracked by this 
smart brute force attack at a cost far less than expected.  

To prevent all low-entropy passwords defined above, a simple 
but efficient algorithm can be defined as follows.  

 
PROCEDURE: Proactive_checking_for_7pwd ()  
INPUT: char * password 
Begin procedure 
    Scan each character in password; 

    IF (there are ≥ 5 numeric characters) 
    THEN reject; 
    ELSE /* matching two legal patterns */ 

IF (there is ≤ 1 repeated alphabetic)  AND    
    (occurrence of the repeated alphabetic ≤ 2) 

     THEN accept; 
ELSE reject; 

 ENDIF 
    ENDIF 
End procedure 
 

This is not an alternative algorithm, but a complementary one to 
improve dictionary-based checking for 7-character 
alphanumerical passwords. Some password checkers like 
Npassword [9] could reject passwords with three or more 
adjacent repeated characters, which, however, only constitute a 
small subset of weak passwords covered by our algorithm. 



If passwords generated from all identified weak patterns are 
included into a dictionary, entropy based checking can be 
achieved by the traditional dictionary-based approach. 
Nonetheless, pattern-based entropy checking has the following 
obvious advantages: 1) it can not only save the storage, but also 
improve the checking speed by reducing the dictionary search 
space; and typically, 2) its algorithm is efficient due to its 
simplicity. 

 

4 SUMMARY AND SUGGESTIONS FOR 
FURTHER WORK 

 
Although new password techniques have emerged, proactive 
password checking is still a desirable method to improve 
password security in real life. Unfortunately, current checking 
algorithms mainly (if not totally) depend on dictionary-based 
checking, and they often fail to filter some weak passwords with 
low entropy. We suggested the use of entropy-based proactive 
password checking to address this new class of weak passwords. 
To dig out effective patterns of weak passwords with low 
entropy was proposed as the first step of performing entropy-
based proactive checking, and an example was given.  

Entropy-based checking is not an alternative method, but a 
complementary one to improve dictionary-based checking. Good 
proactive password checking = dictionary-based checking + 
entropy-based checking. What we have done here is only a first 
step towards a full search of weak password patterns for entropy 
based checking. It is easy to extend our analysis and algorithm 
for, say, passwords with eight or more characters, or passwords 
that consist of only alphabetic and punctuation characters, and it 
is useful to develop entropy-based password checking 
algorithms for Unix and Windows NT passwords to improve 
their current dictionary-based algorithms. Moreover, our 
discussion of classes of passwords is ad hoc. It would be 
interesting to look for a generic means.  
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