
A Note on Proactive Password Checking

Jianxin Jeff Yan

Computer Laboratory, University of Cambridge
Jeff.Yan@cl.cam.ac.uk

ABSTRACT

Nowadays, proactive password checking algorithms are based
on the philosophy of the dictionary attack, and they often fail to
prevent some weak passwords with low entropy. In this paper, a
new approach is proposed to deal with this new class of weak
passwords by (roughly) measuring entropy. A simple example is
given to exploit effective patterns to prevent low-entropy
passwords as the first step of entropy-based proactive password
checking.

Keywords
Proactive password checking, dictionary attack, entropy

1 INTRODUCTION

Password security is an old problem. Due to the limitation of
human memory, people are inclined to choose easily guessable
passwords (e.g. phone numbers, birthdays, names of family or
friends, or words in human languages) that might lead to severe
security problems. Though it was commonly believed that
secure passwords were difficult to remember and easy-to-
remember passwords were insecure, a recent experiment [14]
showed with hard data that passwords based on mnemonic
phrases could provide both good memorability and security, but
non-compliance with password selection advices was a main
threat to password security.

Proactive password checking has been a common means to
enforce password policies and prevent users from choosing
easily guessable passwords in the first place. When a user
chooses a password, a proactive checker will determine whether
his password choice is acceptable or not, and this proactive
checking is done online and the user will be immediately

responded the result. Among common approaches to improving
password security by selecting good passwords, such as user
education, program-controlled password generation and reactive
password checking (i.e., system administrators periodically run
password cracking programs to search weak passwords),
proactive password checking has been widely regarded as the
best [2, 3, 6, 11].

In 1999, Wu [13] reported a password experiment done in a
Kerberos setting where a proactive password checker was used.
Wu recommended strong password authentication protocols
such as EKE [1], SRP [12] as an alternative approach to
improving password security, since the checker appeared not to
help that much in his experiment but those password
authentication protocols appeared to eliminate the threat of
offline dictionary attack on passwords. As far as we know, this
is the most negative criticism of proactive password checking so
far. Wu’s claim of inefficacy of proactive password checking,
however, is unconvincing, since the poor experimental result
shown in his paper might and does simply suggest that the
proactive checker used in his experiment was not effective.

On the other hand, although strong password authentication
protocols utilize cryptographic technologies to generate strong
session keys from passwords so that users may use weak
passwords in some circumstances, they are not the “silver
bullet” for password security. Firstly, these methods are
expensive, and are not widely deployed in fielded systems. It
also appears impossible to apply this technique in every place
where the password mechanism is needed. Secondly, they are
complex and error-prone. Security protocols are notoriously
difficult to be correct, and subtle security flaws of protocols
have been published from time to time. There are already some
attacks against password authentication protocols, e.g. [10],
published in the literature. Moreover, nobody is sure whether
those authentication protocols are secure as claimed or not
before they are rigorously proved. Most importantly, the party
that stores the password file can still do offline dictionary attack
as usual. Although strong password authentication protocols do
amplify the search space of a weak password to that of a much
stronger cryptographic key, this amplification is meaningful
only when an attacker does dictionary attack against the key.
The threat of offline dictionary attack, launched directly on the
password file, is still there. For example, there might be an
internal attack. Moreover, password authentication protocols are
vulnerable to either online dictionary attack or denial of service
attack. If these protocols are designed to be resilient to the

former attack, then they are unavoidably vulnerable to the latter
attack, and vice versa.

Password security is not a problem that can be solved only by
technical means. Human factor is also very important1. In case
users become complacent due to the (superficial) technical
advantage of strong password authentication protocols - the
advertisement in many papers is that a user can use “weak”,
“memorable” passwords - so that they choose their names or
user IDs, phone numbers or whatever is simple as their
passwords, it is not impossible for an attacker to easily guess
them after a few tries in an online dictionary attack.

Therefore, in places where strong password authentication does
or does not fit, good password selection policies enforced by
proactive checking is still one of desirable methods to improve
password security in practice. From Wu’s experiment, we also
see a great and urgent demand of effective proactive password
checking tools in real life. Nevertheless, proactive password
checking is not a perfect technique. In this paper, we try to
address a common shortcoming of the state of the art of
proactive checking and propose a remedy.

2 PROACTIVE PASSWORD
CHECKING: STATE OF THE ART

Theoretically, it is easy for proactive password checking to
block all possible weak passwords. It might, for example, be
enough to enforce such a simple password policy: each
password has no less than eight characters, among which there is
at least one lower case character, at least one uppercase
character, at least one numerical character and at least one
punctuation character, and there is no character occurring more
than twice. Nevertheless, it is impractical to do that in real life,
since passwords complying with such a policy might be too
difficult to be memorized. There are always some trade-offs
between security and user convenience for password choice. As
a basic assumption, proactive password checking algorithms
typically do not enforce extremely strict policies but allow users
to choose “good enough” passwords, though the criteria of
“good enough” might vary in different circumstances.

2.1 Dictionary Attack: the Basis of Current
Proactive Password Checking

1 When implementing proactive password checking, it is also

crucial to consider human factor, organizational or social
issues. For example, users should be given good feedback on
why passwords fail the test, and how they can choose a better
one (now, they can be instructed to choose mnemonic phrase
based passwords as suggested by [14]). In case passwords are
rejected without appropriate explanation and further
instruction, users may dislike the system and try to undermine
it. The detailed discussion of this is, however, beyond the
scope of this paper.

When a hacker cracks passwords, he can use the following two
methods: 1) to do a dictionary attack, which tries each of a list
of word and other possible weak passwords, and simple
transformations such as capitalizing, prefixing, suffixing or
reversing a word as a candidate until the hashed value of the
candidate matches a password hash; and 2) to launch a brute
force attack to search the whole key space, which is commonly
huge. Hackers, however, always prefer to use dictionary attack,
because it has proved to be very effective in history [6].
Following a similar thinking, current proactive password
checkers are based on the dictionary attack. They check each
user-chosen password candidate against a dictionary of weak
passwords. If a candidate matches a dictionary item, or anyone
of its variants that are generated by common transformations,
then the candidate is an unacceptable password and rejected.

For example, crack [7] is one of the most popular password-
cracking software. Although it also supports the brute force
attack, it has been far more used as a dictionary-based cracking
tool. Utilizing a similar dictionary-based algorithm used by
crack, its designer also implemented cracklib [8], a proactive
password-checking library, which has been integrated into some
password systems. Armed with a same dictionary, a cracklib-
supported system can prevent all weak passwords that can be
guessed by crack.

In order to cover as many weak passwords as possible, a huge
dictionary is commonly required for this dictionary-based
proactive password checking. The dictionary file may occupy
tens of megabytes or even more storage space, and it may take a
very long time to search the huge dictionary. Consequently, an
essential research problem has been how to efficiently store and
search the dictionary. The search speed is even a more important
concern than storage space, because proactive password
checking needs to be done online in real-time while a user waits
for an immediate response from the system.

The cracklib v2.7 included a dictionary of 1.4 million words,
which had a raw size of around 15MB, and the whole package
of all files occupied around 7MB, which was around 45% of
original size. It used a modified-DAWG (Directed Acyclic Word
Graph) compression algorithm, which preprocessed sorted lists
of words to remove redundancy and make compression tools
like gzip more effective. A gzipped-DAWG dictionary was
typically about 50% of the size of the gzipped non-DAWGed
dictionary [8]. In order to improve search speed, cracklib used
an index file to access dictionary words, and kept a table to
assist binary searching. In summary, the algorithms used by
cracklib to optimize dictionary storage and checking speed were
very intuitive, and they only worked efficiently when the
dictionary file was of a modest size.

Researchers have been looking for good algorithms that could
achieve both fast checking speed and effective dictionary
compression at the same time. For example, Spafford used
Bloom filters [4] in his OPUS system [11]. Davies and Ganesan
used trigrams and a Markov model in their BApasswd [5]. The
state-of-the-art of proactive password checking is ProCheck [2,
3], which uses decision-tree techniques to achieve high
dictionary compression (up to 1000:1) as well as a fast checking
speed. In its current implementation, a decision tree classifier
with the size of only 24 KB is generated from a 28 MB
dictionary file of 3,215,846 words. The proactive checking

algorithm only searches the small classifier to determine whether
a password is acceptable or not. As far as we know, ProCheck
provides the fastest checking speed and best compression of a
huge dictionary.

When a dictionary used by a proactive password checker does
not match that used by a cracker, it is likely that the checker will
fail to prevent some weak passwords, which can be successfully
guessed by the cracker afterwards however. Although this
appears to be an inherent difficult-to-solve defect for password
checking, the ProCheck technique makes it possible for security
defenders to arm themselves with dictionaries as huge as they
like, and thus significantly minimize the chance window of bad
guys.

2.2 A Common Shortcoming

Even though a word in a live language is extremely difficult to
memorize, or seldom used and thus strange to the mind of most
people so that it appears to be secure, it is still a weak password
if a proactive password checker includes that word in its
dictionary file. On the contrast, some really weak passwords
with low entropy could be considered to be “good” by proactive
password checkers. This is a common shortcoming within
current proactive password checking. Wu [13] also observed
this.

In our experiment, all existed password checkers including
ProCheck failed to catch weak passwords like a198b53, which
are of low entropy. Ironically, 12345abc could be rejected as a
weak password by some checkers, but 12a3b4c5 would be
accepted as a good one by all checkers. Similarly, some checkers
could easily reject 12345ab, but failed to catch 12a34b5.
This kind of failure comes from the rational: 1) the common
practice for password management is always based on dictionary
attack to search weak passwords, and those passwords that
cannot be cracked by dictionary-based attacks are usually
considered to be secure; and consequently, 2) current proactive
checkers mainly (if not totally) rely on dictionary-based
checking, and most low-entropy passwords are ignored.

These low-entropy passwords constitute a new class of weak
passwords, and need to be properly addressed.

3 ENTROPY BASED PROACTIVE
PASSWORD CHECKING: AN
EXAMPLE

We propose to use entropy based proactive password checking
to detect the abovementioned new class of weak passwords, and
allow only high entropy passwords. Moreover, we propose to
dig out effective patterns of weak passwords with low entropy as
the first step of performing entropy-based proactive checking.

Until now, a few password patterns have been exploited to
recognize weak passwords by current password checkers. For
example,

• Minimum password length;

• All digits or all punctuation characters;

• Calendar dates or phone numbers;

• Adjacent keys, such as 12345ab, 12345abc,
ehm12345, abcdefgh.

Nonetheless, those used patterns are of a very limited number
and type, and they cannot tackle many other weak passwords
with low entropy. On the other hand, the simple password policy
described in the beginning of Section 2 leads to a too strong
pattern to be acceptable. In this section, we take 7-character
alphanumeric password as an example of seeking for weak
patterns of low entropy passwords. We deliberately choose 7-
character case-insensitive alphanumeric password as our
example, because they are widely used in real life, though many
systems like Unix and Windows NT support case sensitive
passwords. Empirical data showed that users generally avoided
using the shift key, and 86% passwords cracked in Wu’s
experiment could be typed without it [13]. This might partially
explain that. On the other hand, the password scheme of Novell
Netware is case insensitive, so there are more passwords that fall
into this category in a Netware environment.

3.1 Different Distribution Areas for 7-
Character Passwords

We denote the permutation operation by P(). Consider a 7-
character alphanumeric password. It may reside in one of the
eight exclusive distribution areas defined as follows.

1). P(7a): all 7 characters are alphabetic

2). P(6a+1n): 6 alphabetic and 1 numeric

3). P(5a+2n): 5 alphabetic and 2 numeric

4). P(4a+3n): 4 alphabetic and 3 numeric

5). P(3a+4n): 3 alphabetic and 4 numeric

6). P(2a+5n): 2 alphabetic and 5 numeric

7). P(1a+6n): 1 alphabetic and 6 numeric

8). P(7n): all 7 characters are numeric

Table 1 shows the search space and cost of each of these eight
areas. The search cost is benchmarked with an attacking speed
of 4.7µs per try, which is measured for the Novell Netware
password hash algorithm on a Pentium 333 Windows NT
machine.

Among these eight areas, it takes the highest percentage of the
full search (36^7) to cover the P(5a+2n) area, which is an area
with the highest entropy for a 7-character alphanumeric
password, or the most secure area in terms of brute force attacks.
Similarly, P(6a+1n) is the second strongest area. However,
either P(7n), P(1a+6n) or P(2a+5n) is a relatively weak area
where passwords are with low entropy. As shown in Table 1,
there is a clear division between high and low entropy areas. We
use a dashed line to mark the division.

3.2 Different Pattern Distributions for 7-
Character Passwords

In this section, we look into the distribution of different
password patterns in the P(7a), P(6a+1n), P(5a+2n) and

P(4a+3n) areas. Table 2 ~ 5 list each possible password pattern
in each area, along with its search cost as a percentage of this
area and of the whole search space of 36^7. In each of these
tables, there is a clear division that separates strong and weak
password patterns in that area. We also use a dashed line to
show the division boundary in each table.

Table 1. Different distribution areas for 7-character passwords

Areas Search space = Value Percentage Cracking Time

 minutes hours days

Full 36^7 78,364,164,096 100.00% 6,138.53 102.31 4.26

P(7a) 26^7 8,031,810,176 10.25% 629.16 10.49 0.44

P(6a+1n) (C
1

7
*10) * 26^6 21,624,104,320 27.59% 1,693.89 28.23 1.18

P(5a+2n) (C
2

7
*10^2)*26^5 24,950,889,600 31.84% 1,954.49 32.57 1.36

P(4a+3n) (C
3

7
*10^3)*26^4 15,994,160,000 20.41% 1,252.88 20.88 0.87

P(3a+4n) (C
4

7
*10^4)*26^3 6,151,600,000 7.85% 481.88 8.03 0.33

P(2a+5n) (C
5

7
*10^5)*26^2 1,419,600,000 1.81% 111.20 1.85 0.08

P(1a+6n) (C
6

7
*10^6)*26 182,000,000 0.23% 14.26 0.24 0.01

P(7n) 10^7 10,000,000 0.01% 0.78 0.01 0.00

Total: 78,364,164,096 100.00% 6,138.53 102.31 4.26

Speed(s/try): 4.70E-06

Table 2. Pattern Distributions in the P(7a) Area

Patterns Search space = Value
Percentage

(Value/P(7a))
Cost

(Value/36^7)

All for P(7a) 26^7 8,031,810,176 100.00% 10.25%

1. No repeated character P
7

26
 3,315,312,000 41.28% 4.23%

2. Only one repeated character

 One occurs twice C
2

7
* P

6

26
 3,481,077,600 43.34% 4.44%

 One occurs three times C
3

7
* P

5

26
 276,276,000 3.44% 0.35%

 One occurs four times C
4

7
* P

4

26
 12,558,000 0.16% 0.02%

 One occurs five times C
5

7
* P

3

26
 327,600 0.00% 0.00%

 One occurs six times C
6

7
* P

2

26
 4,550 0.00% 0.00%

 One occurs seven times C
7

7
* 26 26 0.00% 0.00%

3. Two repeated characters

 each occurs twice C
5

26
10(7! / (2!)^2) 828,828,000 10.32% 1.06%

 one twice, another three times C
2

7
*C

3

5
* P

4

26
 75,348,000 0.94% 0.10%

 one twice, another four times C
2

7
*C

4

5
* P

3

26
 1,638,000 0.02% 0.00%

 one twice, another five times C
2

7
* P

2

26
 13,650 0.00% 0.00%

 each occurs three times C
3

26
3(7! / (3!)^2) 1,092,000 0.01% 0.00%

 one three, another four times C
3

7
* P

2

26
 22,750 0.00% 0.00%

4. Three repeated characters

 each occurs twice C
4

26
4(7! / (2!)^3) 37,674,000 0.47% 0.05%

 two occurs twice, another three times C
3

26
3(7! / (2!2!3!)) 1,638,000 0.02% 0.00%

 Total: 8,031,810,176 100.00% 10.25%

Table 3. Pattern Distributions in the P(6a+1n) Area

Patterns Search space = Value
Percentage

(Value/P(6a+1n))
Cost

(Value/36^7)

All for P(6a+1n) (C
1

7
*10) * 26^6 21,624,104,320 100.00% 27.59%

1. No repeated alphabetic (C
1

7
10) P

6

26
 11,603,592,000 53.66% 14.80%

2. Only one repeated alphabetic

 one occurs twice (C
1

7
10)(C

2

6
* P

5

26
) 8,288,280,000 38.33% 10.57%

 one occurs three times (C
1

7
10)(C

3

6
* P

4

26
) 502,320,000 2.32% 0.64%

 one occurs four times (C
1

7
10)(C

4

6
* P

3

26
) 16,380,000 0.08% 0.02%

 one occurs five times (C
1

7
10)(C

5

6
* P

2

26
) 273,000 0.00% 0.00%

 one occurs six times (C
1

7
*10)*26 1,820 0.00% 0.00%

3. Two repeated alphabetic

 each occurs twice (C
1

7
10)(C

4

26
*C

2

4
* 6! / (2! * 2!)) 1,130,220,000 5.23% 1.44%

 one twice, another three times (C
1

7
10) (C

2

6
*C

3

4
* P

3

26
) 65,520,000 0.30% 0.08%

 one twice, another four times (C
1

7
10) (C

2

6
* P

2

26
) 682,500 0.00% 0.00%

 Each occurs three times (C
1

7
10) (C

2

26
* 6! / (3! * 3!)) 455,000 0.00% 0.00%

4. Three repeated alphabetic

 Each occurs twice (C
1

7
10) (C

3

26
* 6! / (2! * 2! * 2!)) 16,380,000 0.08% 0.02%

 Total: 21,624,104,320 100.00% 27.59%

Table 4. Pattern Distributions in the P(5a+2n) Area

Patterns Search space = Value
Percentage

(Value/P(5a+2n))
Cost

(Value/36^7)

All for P(5a+2n) (C
2

7
*10^2)*26^5 24,950,889,600 100.00% 31.84%

1. No repeated alphabetic (C
2

7
10^2) P

5

26
 16,576,560,000 66.44% 21.15%

2. Only one repeated alphabetic

 one occurs twice (C
2

7
10^2)(C

2

5
* P

4

26
) 7,534,800,000 30.20% 9.62%

 one occurs three times (C
2

7
10^2)(C

3

5
* P

3

26
) 327,600,000 1.31% 0.42%

 one occurs four times (C
2

7
10^2)(C

4

5
* P

2

26
) 6,825,000 0.03% 0.01%

 one occurs five times (C
2

7
*10^2)*26 54,600 0.00% 0.00%

3. Two repeated alphabetic

 each occurs twice (C
2

7
10^2)(C

3

26
* 3 * 5! / (2! * 2!)) 491,400,000 1.97% 0.63%

 one twice, another three times (C
2

7
10^2)(C

2

5
* P

2

26
) 13,650,000 0.05% 0.02%

 Total: 24,950,889,600 100.00% 31.84%

Table 5. Pattern Distributions in the P(4a+3n) Area

Patterns Search space =Value
Percentage

(Value/P(4a+3n))

Cost

(Value/36^7)

All for P(4a+3n) (C
3

7
*10^3)*26^4 15,994,160,000 100% 20.41%

1. No repeated alphabetic (C
3

7
10^3) P

4

26
 12,558,000,000 78.52% 16.03%

2. One repeated alphabetic

 one occurs twice (C
3

7
10^3)(C

2

4
* P

3

26
) 3,276,000,000 20.48% 4.18%

 one occurs three times (C
3

7
10^3)(C

3

4
* P

2

26
) 91,000,000 0.57% 0.12%

 one occurs four times (C
3

7
*10^3)*26 910,000 0.01% 0.00%

3. Two repeated alphabetic

 each occurs twice (C
3

7
10^3)(C

2

26
*4! / (2! * 2!)) 68,250,000 0.43% 0.09%

 Total: 15,994,160,000 100.00% 20.41%

3.3 A Simple Checking Algorithm

The above analysis shows that there are clear divisions both
between strong and weak password areas, and between strong
and weak password patterns. It is obvious that a password that
falls into the following two categories must be with relatively
low entropy:

• Passwords in the P(7n), P(1a+6n), or P(2a+5n) area,
i.e., passwords that have 5 or more numerical
characters;

• Passwords that are in the P(7a), P(6a+1n), P(5a+2n)
or P(4a+3n) area and have two or more repeated
alphabetic, or one alphabetic occurring three or more
times.

Traditionally, brute force attack ignored these divisions and
aimlessly searched each candidate in the full password space.
That is the reason that it couldn’t efficiently crack weak
passwords like ca12612. If the search order of a brute force
attack is weighted by entropy, and low-entropy parts are a first
priority, then low-entropy passwords are likely cracked by this
smart brute force attack at a cost far less than expected.

To prevent all low-entropy passwords defined above, a simple
but efficient algorithm can be defined as follows.

PROCEDURE: Proactive_checking_for_7pwd ()
INPUT: char * password
Begin procedure
 Scan each character in password;

 IF (there are ≥ 5 numeric characters)
 THEN reject;
 ELSE /* matching two legal patterns */

IF (there is ≤ 1 repeated alphabetic) AND
 (occurrence of the repeated alphabetic ≤ 2)

 THEN accept;
ELSE reject;

 ENDIF
 ENDIF
End procedure

This is not an alternative algorithm, but a complementary one to
improve dictionary-based checking for 7-character
alphanumerical passwords. Some password checkers like
Npassword [9] could reject passwords with three or more
adjacent repeated characters, which, however, only constitute a
small subset of weak passwords covered by our algorithm.

If passwords generated from all identified weak patterns are
included into a dictionary, entropy based checking can be
achieved by the traditional dictionary-based approach.
Nonetheless, pattern-based entropy checking has the following
obvious advantages: 1) it can not only save the storage, but also
improve the checking speed by reducing the dictionary search
space; and typically, 2) its algorithm is efficient due to its
simplicity.

4 SUMMARY AND SUGGESTIONS FOR
FURTHER WORK

Although new password techniques have emerged, proactive
password checking is still a desirable method to improve
password security in real life. Unfortunately, current checking
algorithms mainly (if not totally) depend on dictionary-based
checking, and they often fail to filter some weak passwords with
low entropy. We suggested the use of entropy-based proactive
password checking to address this new class of weak passwords.
To dig out effective patterns of weak passwords with low
entropy was proposed as the first step of performing entropy-
based proactive checking, and an example was given.

Entropy-based checking is not an alternative method, but a
complementary one to improve dictionary-based checking. Good
proactive password checking = dictionary-based checking +
entropy-based checking. What we have done here is only a first
step towards a full search of weak password patterns for entropy
based checking. It is easy to extend our analysis and algorithm
for, say, passwords with eight or more characters, or passwords
that consist of only alphabetic and punctuation characters, and it
is useful to develop entropy-based password checking
algorithms for Unix and Windows NT passwords to improve
their current dictionary-based algorithms. Moreover, our
discussion of classes of passwords is ad hoc. It would be
interesting to look for a generic means.

5 ACKNOWLEDGMENTS

The author thanks Alasdair Grant for providing benchmarking
data for the Novell Netware password hash algorithm. The
discussion with Wenbo Mao helped the author to clarify some
points. The comments from anonymous reviewers and
participants of NSPW’01 improved this paper. Mpiti Lenkoe
helped correct some grammar errors in a previous version of this
paper.

6 REFERENCES

[1] Steven M. Bellovin and Michael Merritt, Encrypted Key
Exchange: Password-Based Protocols Secure Against
Dictionary Attacks, IEEE Symposium on Research in
Security and Privacy, May 1992. pp.72-84.

[2] F Bergadano et al. High dictionary compression for
proactive password checking, ACM trans. on info and
system security Vol.1, No.1, Nov. 1998

[3] F Bergadano et al. Proactive password checking with
decision trees, 1997 ACM conference on computer and
communications security, 1997, Zurich

[4] Burton Bloom. Space/time trade-offs in hash coding with
allowable errors, CACM, 13(7): 422-426, July 1979

[5] C. Davies and R. Ganesan. BApasswd: A new proactive
password checker. In 16th National Computer Security
Conference, pages 1--15, Baltimore, MD, Sept. 1993

[6] DV Klein. Foiling the Cracker; A Survey of, and
Improvements to Unix Password Security, Proceedings of
the USENIX Security Workshop. Portland, Oregon:
USENIX Association, Summer 1990; expanded as a
technical report from SEI, 1992

[7] Alec Muffett. Crack 4.0, 5.0, almost everywhere in the
internet

[8] Alec Muffett. CrackLib: a proactive password sanity ibrary.
http://www.users.dircon.co.uk/~crypto/download/cracklib,2
.7.txt

[9] Npassword source code (Latest version: npasswd-
2.X.tar.gz). at
http://www.utexas.edu/cc/unix/software/npasswd/dist/npass
wd-2.05.tar.gz, 2000

[10] S. Patel, Number theoretic attacks on secure password
schemes. IEEE Symposium on Security and Privacy, 1997

[11] E. H. Spafford. OPUS: Preventing Weak Password
Choices, Computers and Security 11(3), pp. 273-278, 1992

[12] T. Wu, The Secure Remote Password Protocol, in
Proceedings of the 1998 Internet Society Symposium on
Network and Distributed System Security, San Diego, CA,
Mar 1998, pp. 97-111.

[13] T. Wu, A Real-World Analysis of Kerberos Password
Security, Proceedings of the 1999 Network and Distributed
System Security Symposium, February 3-5, 1999

[14] Jianxin (Jeff) Yan, Alan Blackwell, Ross Anderson and
Alasdair Grant. The Memorability and Security of
Passwords -- Some Empirical Results. Technical Report
No. 500, Computer Laboratory, University of Cambridge,
2000. http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/tr500.pdf

