
Limiting Vulnerability Exposure through effective

Patch Management: threat mitigation through

vulnerability remediation

Submitted in fulfilment

of the requirements of the degree

MASTER OF SCIENCE

in the Department of Computer Science

of Rhodes University

Dominic Stjohn Dolin White

<project@singe.rucus.net>

January 2006

Abstract

This document aims to provide a complete discussion on vulnerability and patch management.It

looks first at the trends relating to vulnerabilities, exploits, attacks and patches. These trends

provide the drivers of patch and vulnerability management.Understanding these allows the fol-

lowing chapters to present both policy and technical solutions to the problem. The policy lays

out a comprehensive set of steps that can be followed by any organisation to implement their own

patch management policy, including practical advice on integration with other policies, manag-

ing risk, strategies for reducing downtime and vulnerability and generating patch metrics. It then

discusses how best a vendors should implement a related patch release policy that will allow

end-users to most effectively and timeously mitigate vulnerabilities. The next chapter discussed

the technical aspect of automating parts of such a policy andhow defence in depth can be ap-

plied to the field of patch management. The document then concludes that patch management is

becoming more difficult and the guidelines described will goa long way into creating a workable

and effective means for mitigating exposure to vulnerabilities. However, more research is needed

into vulnerabilities, exploits and particularly into threats.

Contents

1 Introduction 1

1.1 Backgrounds . 1

1.2 Patch Management .3

1.2.1 Definitions . 4

1.3 The Need for Patch Management 6

1.4 Objectives .7

1.5 Methodology . 8

1.6 Conclusion . 10

2 Vulnerability and Patch Management 11

2.1 Introduction .. 11

2.2 The Vulnerability Life-Cycle 12

2.3 Vulnerabilities, Malware and Exploitation Trends 16

2.3.1 Increasing number of vulnerabilities 16

2.3.2 Increasing number of attacks 18

2.3.3 Exploit window shrinking .. 21

2

CONTENTS 3

2.4 Problems with Patches .. . 22

2.4.1 Unpredictable Patches .. 23

2.4.2 Too Many Patches . 24

2.4.3 Window to Patch is Shrinking .. 25

2.4.4 Complex Patches . 26

2.4.5 Hard to obtain patches .26

2.4.6 Problem Patch Examples .28

2.4.6.1 SQL Slammer/Sapphire Worm 28

2.4.6.2 GDI+ JPEG Vulnerability . 30

2.5 Conclusion . 31

3 Policy Solutions 33

3.1 Introduction .. 33

3.2 Patch Management Policy .. . 34

3.2.1 Patch and Vulnerability Group 35

3.2.2 Security, Stability, Functionality Patches and Workarounds 36

3.2.3 Policy . 38

3.2.3.1 Information Gathering . 40

3.2.3.2 Risk Assessment . 47

3.2.3.3 Scheduling and Patching Strategy 53

3.2.3.4 Testing . 57

3.2.3.5 Planning & Change Management 61

CONTENTS 4

3.2.3.6 Deployment, Installation and Remediation 64

3.2.3.7 Verification & Reporting . 65

3.2.3.8 Maintenance . 71

3.2.3.9 Summary . 72

3.3 Conclusion . 73

4 Vendor Patch Release Policy 75

4.1 Introduction .. 75

4.2 State of the Art .76

4.3 An analysis of patch schedules 78

4.3.1 The Disclosure Debate .79

4.3.1.1 Delayed Disclosure . 80

4.3.1.2 Instantaneous Disclosure . 81

4.3.2 Patch Schedules and Delayed Disclosure 82

4.3.3 Patch Schedules and Instantaneous Disclosure 83

4.3.3.1 Quality . 84

4.3.3.2 Planned Deployment . 87

4.3.3.3 Examples . 88

4.3.4 Conclusion . 90

4.4 Advice for implementing a Patch Release Schedule 90

4.4.1 Dual Schedules and Separation Criteria 91

4.4.2 Predictable Patch Release Schedule 92

CONTENTS 5

4.4.3 Critical Patch Release .. 94

4.4.4 Encouraging Delayed Disclosure 96

4.5 Conclusion . 97

5 Practical Solutions 98

5.1 Introduction .. 98

5.2 Patch Management Software 98

5.2.1 Functionality and Classification of Patching Tools 99

5.2.1.1 Notification . 103

5.2.1.2 Inventory Management . 104

5.2.1.3 Vulnerability Scanner . 105

5.2.1.4 Patch Testing . 106

5.2.1.5 Patch Packaging . 107

5.2.1.6 Patch Distribution . 111

5.2.1.7 Reporting . 111

5.2.1.8 Summary . 112

5.2.2 Architecture . 112

5.2.2.1 Agentless . 112

5.2.2.2 Agent . 114

5.2.3 Available Tools . 115

5.2.3.1 Evolution . 115

5.2.3.2 Examples . 117

CONTENTS 6

5.3 Defence in Depth .119

5.3.1 Firewalls and Anti-Virus .. . 119

5.3.2 Intrusion Detection/Prevention Systems 120

5.3.2.1 Virtual Patching . 121

5.3.3 Other Hardening . 122

5.3.4 Software Selection .122

5.4 Conclusion . 124

6 Conclusion 126

6.1 Introduction .. 126

6.2 Objectives .126

6.2.1 Summary . 128

6.3 Problems and Solutions 129

6.4 Future Work . 129

6.4.1 Threat Management . 129

6.4.2 Vulnerability Detail and Trend Tracking 130

6.4.3 Optimal Time to Patch for Large Vendors 130

6.4.4 Patch Standards . 131

6.5 Final Word . 131

Bibliography 133

References 133

CONTENTS 7

A Time-line of Notable Worms and Viruses 157

A.1 Introduction .. 157

A.2 Time-line . 157

A.2.1 2006 . 157

A.2.2 2005 . 157

A.2.3 2004 . 158

A.2.4 2003 . 158

A.2.5 2001 . 159

A.2.6 1999 . 159

A.2.7 1998 . 160

A.2.8 1995 . 160

A.2.9 1992 . 160

A.2.10 1989 . 160

A.2.11 1988 . 160

A.2.12 1987 . 160

A.2.13 1982 . 161

B Analysis of WSUS 162

B.1 Introduction .. 162

B.2 What’s New . 163

B.3 Installation .. 164

B.3.1 Topology . 164

CONTENTS 8

B.3.1.1 Default . 164

B.3.1.2 Grouping . 164

B.3.1.3 Chaining . 166

B.3.1.4 Client Download . 166

B.3.2 Requirements . 167

B.3.3 Server . 168

B.3.4 Client . 169

B.4 Configuration .169

B.4.1 Server . 169

B.4.2 Client Side . 174

B.5 Patching . 177

B.5.1 Synchronisation . 177

B.5.2 Approval . 177

B.5.3 Detection . 179

B.5.4 Distribution . 180

B.5.5 Installation . 180

B.5.6 Verification . 180

B.6 Reporting . 180

B.7 Packet Capture .181

B.7.1 Steps Performed . 181

B.7.2 Resulting Network Traffic .. 184

CONTENTS 9

B.7.3 Analysis . 187

B.7.4 Packet Capture Summary .189

B.7.4.1 Interface . 189

B.7.4.2 Security . 189

B.8 Resources . 189

B.9 Conclusion . 190

List of Figures

2.1 Theorised Vulnerability Life-Cycle [1] 14

2.2 Generalised Model of Empirical Findings 16

3.1 Hypothetical graph of the risk of compromise and patching [2]. 55

3.2 Patch application and its impact on Availability[3] 56

3.3 Diagram of the proposed Patch Management policy 73

4.1 Delayed Disclosure and its effects on vulnerable machines and exploitation

Source: Modified from Rescorla [4] .. . 81

4.2 Instantaneous Disclosure and its effects on vulnerablemachines and exploitation

Source: Modified from Rescorla [4] .. . 82

5.1 Graph of the effectiveness of binary patch tools 110

5.2 Graph of the number of vulnerabilities in different Linux kernel versions per

year.

Source: CVE [5] . 124

B.1 Default Topology .. 165

B.2 Grouped Topology .165

B.3 Chained Topology .. 166

1

LIST OF FIGURES 2

B.4 Client Download Topology 167

B.5 WSUS Administrative Interface 168

B.6 WSUS Configuration .170

B.7 Automatic Approval .. 171

B.8 Product Update Selection 172

B.9 Client-Side Computer Grouping 173

B.10 New BITS Options .175

B.11 Remove Access to Windows Update 176

B.12 Update Approval .. 178

B.13 Patch Status Detection 179

B.14 WSUS reports .181

B.15 Report by Computer .. 182

B.16 Report by Update .. 183

List of Tables

3.1 Types of Patch and Remediation Summary 38

3.2 Patch Management Policy Summary 39

3.3 Factors influencing priority rating 42

3.4 Patch and Vulnerability Detail Summary 44

3.5 Exploit and Threat Detail Summary 47

3.6 Impact Level[6] . 52

3.7 Likelihood[6] . 53

3.8 Risk Level[6] . 53

4.1 Half-Life of Vulnerabilities [7, 8, 9] 78

4.2 (Corrected) Microsoft Time to Patch Summary 89

5.1 Table comparing file sizes of different methods of distributing the same file. . . . 109

5.2 Patch Management Automation 113

5.3 Comparison of Patch Management Tool Functionality 118

3

LIST OF TABLES 4

5.4 Table depicting vulnerabilities in the different Linuxkernel versions over time

Source: CVE [5]

Note: The total columns do not add up correctly as some vulnerabilities affect multiple kernel

versions or non-standard kernel patches. For example in 2004 there were 13 vulnerabilities

which overlapped and in 2000 one vulnerability was in the trustees kernel patch and in 1999 one

vulnerability was in the 2.0 kernel version which isn’t included. These are included in the total

to provide an idea of the general reporting trends in the linux kernel. 123

Acknowledgements

For-most thanks to the Father, Son and Holy Spirit.

umuntu ngumuntu ngabantu - a person is a person through otherpeople

Thanks to Barry Irwin, my excellent supervisor, for his years of support and without whom this

thesis would have been left to languish. Thank you to my mother, father and brother for their

support. Thank you to my friends who provided support and a sounding board; in particular

Jason van Niekerk, Chantelle Morkel, (the KiDDiEs) Jonathan Hitchcock, Yusuf Motara, Ingrid

Brandt, Bradley Whittington, Russell Cloran, and David Mackie. Thanks to members of the

international security community, particularly Adam Shostack, Susan Bradley and the excellent

volunteers at the Internet Storm Centre for their help. Particular thanks to Daniela Faris for

agape, philia anderos; Bradley Whittington for giving me a place to stay, even though it was

flea-ridden and Chantelle Morkel for the food and laughter.

A few people gave up their valuable time to help proof read this; thank you Johnathan Hitch-

cock, Thamsanqua Moyo, Fred Otten and Barry Irwin. Finally,thank you to Rhodes University

Computer Science department, Professor Peter Clayton, John Gillam, the NRF and DAAD for

providing me with the opportunity and resources to study with a special thanks to Caro Watkins

for letting me sleep where I shouldn’t.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 South

Africa License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.0/za/ or senda

letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Chapter 1

Introduction

1.1 Backgrounds

“At the moment computer security is rather basic and mostly reactive. Systems

fail absolutely rather than degrade. We are still in a world where an attack like the

slammer worm combined with a PC BIOS eraser or disk locking tool could wipe

out half the PCs exposed to the internet in a few hours. In a sense we are fortunate

that most attackers want to control and use systems they attack rather than destroy

them.”

– Alan Cox, Linux Kernel Developer in an Interview with Edd Dumbill [10]

Alan Cox’s quotation provides a concise introduction into the current state of information secu-

rity, the field in which this research is conducted. The tone of the quote sets the tone of the field,

there are a significant number of evolving threats and without effective research and defences we

are in danger of being overwhelmed. He first refers to the binary nature of system failures, where

it is an all or nothing world, and nuanced risk mitigation strategies that allow for the reality of

some intrusion without resulting in a complete system breach are unavailable. He references

one of the most effective worms we have seen in recent times, which managed to compromise

90% of its hosts within 10 minutes. It was the first example of atheorised Warhol worm able

to disable every host on the internet in 15 minutes, a reference to Andy Warhol when he said

“everyone will have 15 minutes of fame” [11]. Cox points out the unsophisticated nature of the

Slammer worm, it contained no destructive payload, in fact,all of its damage was caused by the

1

CHAPTER 1. INTRODUCTION 2

excessive load it put on infrastructure in searching for andinfecting hosts. Slammer’s record has

since been topped by more dangerous worms such as the Witty worm. Over the last few years

some of the least destructive worms, have resulted in a rangeof Hollywood style consequences:

ATMs being infected with malicious code [12], planes being grounded [13], waste-water plants

disgorging sludge [14] and a nuclear power plant compromise[15].

Cox’s next reference is to the changing nature of malicious entities on the Internet. Where

previously malicious attackers were hypothesised to be curious geeks with questionable ethics,

increasingly threats appear to be coming from criminal entities with a profit motive [16], who

seem to be collaborating to use multiple simultaneous attack vectors [16]. Two neologisms

have been added as sub-types of malware1; spyware and adware, a reference to the increasing

monetisation of malicious software that seeks to steal private information for a profit [17]. This

malicious software is employing sophisticated attack and control techniques often utilising the

same techniques as the good guys. For example the hacker defender root-kit uses the same

signature based approach virus scanners use, to detect anti-virus software and disable it [18].

Cox’s reference to controlling and using systems encompasses many examples, including wide

scale identity theft [19], massive botnet farms, wide-spread phishing scams and an out of control

SPAM problem. Examples of extortion and ensuing DDoS attacks at non-payment abound [20,

21].

As market places and business start building their serviceson top of the Internet, it is becom-

ing increasingly attractive for criminals to follow suit [22]. This has resulted in an increase of

malicious software (malware) and successful intrusions, many of which pass undetected. Recent

activity has indicated a shift from large scale mass-mailerand worm attacks to rapidly evolving

targeted malware attacks, in an effort to make detection harder [16]. As more systems become

networked and private networks are attached to public ones the attack surface of an organisation

is increased, allowing an attacker to take advantages of both complex systems and complex in-

teractions between multiple systems. In response there hasbeen an increase in security activity

to counter such threats. Much of the work is dealing with problems that have existed for a long

time, but have been exacerbated by the increase in maliciousactivity. In particular the automated

exploitation and propagation of malware in the form of wormshas meant that an administrator

has to deal with every vulnerability and deal with it quickly.

Exploiting weaknesses and vulnerabilities in systems in general requires an attacker to think

outside of what is considered normal operating procedures,to discover what unusual behaviour

1A shorthand for malicious software.

CHAPTER 1. INTRODUCTION 3

will result in a higher level of access to the system. This attacker needs to find only one hole, but

often many exist. Conversely, a security professional needs to apply the same level of creative

thinking into defending against every possible hole. This tips the scales in the attacker’s favour.

However, there is a ongoing and concerted effort to provide workable defence strategies by the

white hat2 security community. If organisations develop and implement rigorous security policies

many of the threats can be mitigated to a manageable level.

This work is part of such an effort and hopes to provide some guidance and understanding to the

field of patch management.

1.2 Patch Management

The specific field of study in this work is that of patch management. This field is a subset of

two related fields, namely, vulnerability management and change management. A patch is used

to mitigate a vulnerability permanently, and as such it is a mandatory part of any vulnerability

management program. When many patches are regularly installed, change is regularly introduced

into systems which could potentially cause failures, thesechanges need to be managed. This

describes the patch paradox where without a patch an asset isvulnerable to attack, and with a

patch the asset is vulnerable to failure.

While patch management has recently become a regular topic of discussion, the first recorded

mention of the phrase ’patch management’ on USENET is in 1992[23, 24, 25], although the

concept of patching was introduced before then. Larry Wall (of Perl fame) wrote the Unixpatch

utility in 1985 [26]. In 1997 a project to create a platform non-specific automated patching solu-

tion was funded by the US Department of Energy [11] while at the same time Eugene Spafford’s

COAST Laboratory Secure Patch Distribution Group investigated how to best distribute patches

[27]. This may leave an observer wondering why patch management is receiving so much recent

attention? The common perception is that the onslaught of several effective worms: Code Red,

Nimda, Slammer, Blaster and Sasser; for which patches were available, often months or weeks

in advance highlighted the need for effective patch management. However, these worms too

were nothing new, in 1988 the Morris worm [28] did the same thing. The growth in the num-

ber of inter-networked users and devices on the Internet andtheir increasingly large bandwidth,

2A white hat security professional is one dedicated to the protection of assets, as opposed to malicious black
hats. The terms are a reference to the colour of the hats worm by the good guys and bad guys in old cowboy movies.

CHAPTER 1. INTRODUCTION 4

the increase in the number of software vulnerabilities, theincrease in sophistication, number

and speed of malicious attacks and the difficulties in deploying patches have all contributed to a

re-invigoration of the discussion.

1.2.1 Definitions

To aid further discussion, some definitions need to be provided. This is particularly important

given the wide range of definitions for terms in the relatively young field of information security.

Specifically there is some argument over the use of the term ’threat’. Bejtlich claims that security

professionals are “mixing and matching the termsthreatandvulnerabilityandrisk to suit their

fancy. [29]” It makes sense to side with Bejtlich on this point. Primarily because few seem

to disagree with him on the subject. In addition there are several high quality resources that

agree with his definitions, most notably the US military Information Assurance division [30] and

the Office of Cyber Security & Critical Infrastructure Coordination [31], the National Institute

of Standard (NIST) Special Document 800-30 [32] and Microsoft’s Security Risk Management

Guide [33]. Lastly, Bejtlich’s use of the term allows for a more granular use of the others terms,

particularly ’exploit’. It is unfortunate that documents such as ISO/IEC 17799 do not have a

formal definition of such terms, while other high quality sources such as the National Institute

of Standards Special Publication 800-40 on patch management actually incorrectly defines the

term, instead using threat as a synonym for malware[34]. Thus, the definitions for terms used in

this document are:

Vulnerability

A vulnerability is a weakness in an asset which could be exploited by a threat. In the context

of this discussion the asset is usually an electronic system. Other fields may define the asset

differently, for example in the field of social engineering the asset usually refers to a person. A

vulnerability usually refers to “flaws or misconfigurationsthat cause a weakness in the security

of a system” [32].

Threat

IEC/ISO 13335-1 [35] defines a threat generally as “a potential cause of an unwanted impact to

a system or organisation.“ More specifically a threat is an entity with both the capability and the

intention to exploit a vulnerability in an asset. Some sources define a threat source as the actual

CHAPTER 1. INTRODUCTION 5

entity and the threat as “capabilities, intentions, and attack methods of adversaries to exploit,

damage, or alter information or an information system .” [30] This document finds little use for

the distinction and groups both this definition of threat andthreat-source under the same term.

Exploit

An exploit is either; a process or tool that will attack a vulnerability in an asset; or it is the

action of attacking a vulnerability (exploiting a vulnerability) thereby realising the threat against

that asset. Malware in the form of viruses, Trojans, root-kits and most often worms often use

exploits, but not always. For example, while phishing is an example of exploiting human trust, in

this document exploits refer to tools or processes specifically aimed at exploiting vulnerabilities

in software and electronic systems.

Patch

A patch is a piece of data used to update a software product [36]. A security patch is a change

applied to an asset to correct the weakness described by the vulnerability. This corrective action

will prevent successful exploitation and remove or mitigate a threat’s capability to exploit a

specific vulnerability in an asset. In a broader sense a patchcan be used to correct a flaw that

might not be security related, such as performance issues, or could add new functionality. These

are non-security patches and are usually called functionality or stability patches. A patch usually

consists of packaged pieces of electronic systems code usedto replace existing flawed code. A

patch is distributed in one of three ways:

1. as a patch to the source code of a program

2. a patch to the compiled binary code

3. a complete file(s) replacement.

Typically a patch contains a small change and patches with large changes are usually given

different names such as a service pack or cumulative update.Vendor such as Sun Microsystems,

Microsoft, Oracle Red Hat etc. often have a defined nomenclature for their updates [?, 37, 3]. In

this document the primary discussion will focus on securitypatches unless otherwise specified,

as security patches are the the most critical patch and the most difficult to manage. This is for

two reasons: failure to deploy a security patch may result inan intrusion; and security patches

CHAPTER 1. INTRODUCTION 6

are released more often, with functionality patches usually rolled in to product release cycles. A

fuller discussion on this is provided in section 3.2.2.

Remediation

Remediation will refer to the super-set of possible ways of mitigating a vulnerability of which

patches are just one method. Configuration changes, complete removal of the software, anti-virus

signatures and other additional workarounds could all possibly mitigate a vulnerability and will

be referred to in general asremediation[32].

1.3 The Need for Patch Management

Correct patching isn’t just a matter of installing every patch released by a vendor. Currently there

are over a hundred new vulnerabilities announced each week and this number appears to be grow-

ing (see 2.3.1), each of these vulnerabilities usually has acorresponding patch or workaround.

Sometimes these vulnerabilities remain unpatched for a period of time. An administrator needs

to know which of these vulnerabilities is relevant to her organisation and what their implications

are.

The window between the release of a vulnerability and the release of an exploit is decreasing [7],

with some worms appearing hours after the release of a vulnerability [38], this window is often

smaller than the average organisation’s patch deployment window. This is partly because patches

come with their own set of problems, and sometimes do more damage than than the exploitation

of the vulnerability [39]. Thus, an administrator needs to perform a risk analysis on each one,

often with incomplete information.

The Morris worm of 1988 lead Bill Cheswick to bemoan firewalling practises with the now

famous description “a sort of crunchy shell around a soft, chewy centre.” [40] With the advent

of mobile computing, multiple service multiplexing over HTTP, ubiquitous e-mail and instant

messaging, the phrase has only become more applicable. A firewall never was, and never will

be a suitable defence by itself. End-user desktops are now the most commonly targeted due as

threats exploit end-user trust with confidence tricks over the web, instant messaging, e-mail and

more. Therefore, decision making is not the only bottle neck, often a patch needs to be deployed

to hundreds or thousands of machines and not just internet facing servers.

CHAPTER 1. INTRODUCTION 7

Each machine or groups of machines has a different configuration or circumstances that need

to be taken account of and which make patching non-trivial. Different operating system often

have different methods of patching, thus if an organisationhas followed, the often sensible, route

of platform differentiation, they will need multiple patching mechanisms. Even if an organisa-

tion has a homogeneous computing platform different software products may require their own

patching mechanism, particularly in a Microsoft environment where no third party patches are

currently handled by Microsoft’s patching system.

These complexities all contribute to the quagmire many administrators and home users find them-

selves in when it comes to patching. There are too many vulnerabilities, requiring too many

patches, with too many deployment mechanisms, to be deployed to too many machines. A more

in depth discussion of these problems is provided in chapter2.

1.4 Objectives

The objective of this dissertation is to bring some sense into the patch management discussion.

It aims to provide a discussion of all aspect of patch management that will hopefully provide

guidance to managers, system administrators and software vendors. The dissertation provides

an analysis and definition of the theory of patch and vulnerability management which is then

distilled to provide practical advice.

Specifically there are seven objectives. They starts as investigations into the state and causes for

patch management and move towards providing solutions for some of the discovered problems.

The first objective is to provide an analysis of the vulnerability life-cycle. This will place patches

in their correct context providing discussions on vulnerability disclosure, exploits and patches.

The second objective is to provide an analysis on what causesvulnerabilities and the trends

surrounding the vulnerability life-cycle. The third objective is to provide a discussion on patches

and the problems that result in the difficulty managing them.Together these three objectives

describe the problem any solutions will need to address.

The fourth objective is to provide a method for implementinga patch management policy to

effectively address the problems discovered. This method will be practically applicable to allow

its implementation without recourse to multi-volume risk management strategies and expensive

consultants. The fifth objective is to provide a discussion on how vendors can best implement

CHAPTER 1. INTRODUCTION 8

a scheduled patch release strategy given the increasing trend towards releasing patches on a

predictable schedule. Together these objectives provide adiscussion and policies which can be

used to solve many of the problems discovered in the previousobjectives.

The sixth objective is to provide a discussion on where the described patch management policy

can be automated and benefit from software tools. This will also include a discussion on currently

available tools with a view to separating out the marketing hype present in this young growth

industry. The seventh objective is attempt to create or integrate some of these tools to support

the policy developed in the previous objectives.

A summary of these objectives is that the research conductedhoped to provide:

1. An analysis of vulnerabilities, exploits and patches by discussing the vulnerability life-

cycle.

2. An analysis of vulnerability, exploit and attack trends.

3. An analysis of patches and their problems.

4. A discussion on how to implement a patch management policy.

5. A discussion on how vendors can implement a scheduled patch release policy.

6. A discussion on patch management tools and automating parts of the policy.

7. Tools to help automate and integrate parts of the policy.

The first is to discuss the cause of patching; vulnerabilities. Vulnerabilities are the root problem

and as such a thorough understanding of them is required. Thetrends, causes and influences of

vulnerabilities and related research will provide an understanding of the need for patches and

what specific problems patches are being deployed to fix.

1.5 Methodology

In reaching the objectives discussed in the previous section, four primary methods will be used,

namely:

CHAPTER 1. INTRODUCTION 9

1. a literature survey

2. argumentative analysis

3. case studies

4. best practice models

Each of these will be used to support or refute hypotheses, where best practise models are often

the results of a hypothesis that holds true.

The original intention of this work in its early incantationwas to provide an elegant software solu-

tion to solve the patch management problems. However, it wassoon discovered that the problem

is too complex to be solved by software alone. A quotation by,Bruce Schneier, aptly describes

this, “If you think technology can solve your security problems, then you don’t understand the

problems and you don’t understand the technology.” [41] While time is spent discussing the

plethora of software written to perform patch management tasks it does not form the bulk of this

document, rather a thorough identification of the problems around vulnerabilities and patches

followed by solid policies and recommendations are detailed.

Instead, the large amount of writing on patch management andits related field’s is drawn upon

in each context. Often one authors work can be used with another’s to form a derivative work

that adds to the commons of security knowledge. This synthesis work is a vital tool on many

levels. The synthesising of ideas will hopefully provide a coalescing of consensus around one

point where many views exists. The synthesis of tools will bolster the interaction necessary for

a successful multi-layered approach to security. While this may seem like an obvious point, the

advent of security companies and their related profit motiveoften results in reduced collaboration

in attempt to become the sole product vendor of a product range. From the existing literature

new models and arguments can be derived or created. Thus, themethod of research is largely

analytical.

Finally, it should be noted that the majority of the references are electronic. This was done for

two reasons, the first was to try and ensure that URLs for all work available on-line were included

allowing a reader to quickly locate them. However, the many purely electronic references are due

to the recency of many of the issues discussed. There has beenlittle published research dealing

with several of the points and events discussed in this thesis, and given the focus on current

trends and events they were unavoidable. Additionally, there are still a significant number of

peer reviewed papers and other ’traditional’ references tolegitimise many of the points.

CHAPTER 1. INTRODUCTION 10

1.6 Conclusion

Information, computer and network security is in a poor state. Specifically our current method-

ologies for responding to malware are insufficient. Patch management provides a final solution

to the holes that malware exploits. However, it has its own set of problems that must be dealt

with. This dissertation will analyse the issues around patch management and plot a way forward.

This will be achieved in four parts. First the patch paradox will be discussed, where the diffi-

culties in remediating vulnerabilities are analysed in contrast with the difficulty in managing and

deploying patches. For here a meta-policy framework is provided with an in-depth discussion

of how an organisation can best implement a policy to realistically and effectively remediate

vulnerabilities with patches while minimising the extra risk patches include. After this an argu-

mentative analysis of the current trend of scheduled patching is used to provide advice as to how

vendors could best implement a patch release policy. Finally, the technological aspects of patch-

ing are discussed, specifically how a patch management policy can benefit from automation, and

where current solutions fit in.

Chapter 2

Vulnerability and Patch Management

2.1 Introduction

“This impossible reality has sent patching and the newly minted discipline as-

sociated with it “patch management” into the realm of the absurd. More than a

necessary evil, it has become a mandatory fool’s errand.”

–Scott Berinato,“Patch and Pray” CIO Magazine[39]

Software vulnerabilities have always existed and probablyalways will. They result from the

mistakes of human programmers. This section first aims to provide an analysis and discussion

around the trends and statistics of vulnerabilities. Patching is the final response to a vulnerability

and thus patching trends will follow the cycles of vulnerability trends closely. An understanding

of vulnerabilities will allow better decisions about when and how patches should be deployed.

It is for these reasons vulnerability trends or a case-studyon a recent worm such as Blaster

or Slammer usually form the introduction to most papers on security and particularly on patch

management. Successful worm runs have the effect of motivating the security community to

action, for example the CERT/CC was formed in response to theMorris worm of 1988 and much

of the recent work into patch management came after the worm outbreaks of 2001 [42].

Vulnerability management is the process of identifying, monitoring and responding to vulnera-

bilities. Vulnerabilities in a released product are not managed risks that the product manufacturer

has an understanding of. They are unknown and the liability for these risks often falls to the cus-

tomer. Thus, it is the customer’s responsibility to identify the vulnerabilities affecting them in

11

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 12

order that better risk management decisions can be made. This chapter provides a description of

vulnerabilities and the trends they are facing.

• They are increasing.

• They are being exploited more often.

• The time until an exploit is released is shrinking.

Patch management is the process of correctly and timeously applying software patches to min-

imise downtime and the attack surface of a system. As patchesare release in response to a

vulnerability, they too cannot be predicted, and thus quantifying patch management is a difficult

task. The complexities of vulnerabilities become apparentwhen attempting to fix them. These

complexities are preventing patches from being deployed timeously to vulnerable systems, in

some cases patches are only being deployed months later. Forthe few administrators diligently

applying patches, the task is still non-trivial. The problems with patches and patching will be

explored. These problems will provide the guidance necessary in formulating solutions in later

chapters.

2.2 The Vulnerability Life-Cycle

As discussed in the previous chapter a vulnerability is a weakness in an asset which could be

exploited by an entity. The asset could be anything ranging from a computer system to an em-

ployee. In the context of this chapter we will be discussing software and hardware vulnerabilities

that affect computerised systems. There are several classes of vulnerability each of which could

allow a variety of activities, the worst of which is remote code execution leading to a full system

compromise. For a discussion of trends to occur an understanding of the vulnerability life-cycle

is required. The life cycle of a vulnerability has several stages; Arbaughet al. [43] suggest there

are seven stages with an additional stage mentioned by Browne et al. [44] of the vulnerability

becomingpasse. Schneier [1] has a similar description of stages but does not differentiate be-

tween the release of a scripted exploit and the popularisation of the vulnerability. The stages are

as follows:

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 13

1. Thecreation of the vulnerability. This is when the vulnerability is created during the

implementation of the vulnerable product.

2. Thediscoveryof a vulnerability. The vulnerability in the product is found. Several people

could discover the vulnerability at different times. Little is ever publicly known about this

step.

3. The discovered vulnerability isdisclosed. The disclosure could come from a variety of

sources, in a variety of ways. It could be announced by the vendor or an independent

researcher, or secreted away in a product’s Change Log1.

4. The vulnerability iscorrected. This is usually done by the vendor releasing a patch or

workaround. This should lead to a reduction in successful intrusions overall.

5. The vulnerability ispublicised. This can happen in a variety of ways; for example news

reporting, publishing of an advisory, worm activity; but the end effect is that many people

know about the vulnerability.

6. The exploit isscripted. This can mean that workable exploit code was released, or in-

structions on how to produce one are released, either way theresult is that the number of

attackers is greatly increased as those with less skill (script kiddies) can now perform the

attack.

7. The vulnerability becomespasse.Attackers become disinterested in exploiting this vulner-

ability. This is not guaranteed to happen with every vulnerability, and some vulnerabilities

(and exploits) are shown to have cyclical popularity [43].

8. The vulnerabilitydies. This happens when the number of possible targets vulnerable to

exploitation drops to an insignificant level.

The steps follow this rough order, but there can be significant variation. For example the vul-

nerability could be first corrected with the disclosure following after the correction is reverse

engineered; or the disclosure, correction and publicity could all happen at once. Arbaughet al.

[43] note that in the past the vulnerability life cycle was theorised to look like something like

Figure 2.1, which is a replica of Schneier’s life cycle [1]. However, current research has shown

some of these assumptions to be incorrect and has provided empirical data to better understand

1A register of changes made in a product from one version to thenext.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 14

Figure 2.1: Theorised Vulnerability Life-Cycle [1]

some parts of the curve. The corrected life-cycle can be found in figure 2.2. There are several

important differences.

• Arbaughet al. [43] found that the significant factor which triggers an increase in the num-

ber of reported intrusions was the scripting of the exploit.This caused a dramatic increase

in the number of attempted intrusions even if the correction(patch or workaround) had

been released previously, thus rendering the assumptions of the original theorised model,

particularly that of the immediate effectiveness of releasing a patch, to be false. In the

resulting figure 2.2, the public disclosure of the vulnerability and patch are released at the

same time. However the vulnerability could be disclosed immediately before a vendor can

release a patch, but according to Arbaughet al. this would make little difference as the

scripting of the exploit is the significant factor. For a detailed discussion about the different

types of disclosure refer to sections 4.1 and 4.2.

• Browneet al. [44] found that the number of reported intrusions can be modelled with the

formulaC = I + S ×
√

M whereC is the cumulative count of incidents,M is the time

from the beginning of the exploit cycle andI + S are the regression coefficients to fit the

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 15

curve to the specific incident. Thus, we know that the spike inexploitations will level off

and tend towards a constant over time.

• Eschelbeck’s [8] empirical data showed that the number of vulnerable machines had a

half-life, which was 19 days in 2005, i.e. after 19 days the number of vulnerable machines

halved. This data could explain why the increase in intrusions discovered by Arbaughet

al. levels off in the curve discovered by Browneet al.

• Eschelbeck [8] also discovered that most exploits are available before the end of the first

half-life period of vulnerable machines. This is represented in the diagram by the scripted

exploit being released before the first half-life.

• Browneet al. [44] discuss the dropping off in the number of intrusions when the vul-

nerability becomes passe. The number of intrusions would not drop off like that if the

vulnerability had died (i.e. there were an insignificant number of vulnerable machines).

However, both Eschelbeck’s [8] and Browneet al.’s empirical data show that there may

be repeated spikes in intrusion activity at a later date. Eschelbeck hypothesises that this is

because of new unpatched machines being deployed which effectively gives some vulner-

abilities a near infinite life span. In addition, if another event were to occur which would

publicise the vulnerability (most notably a worm), anotherspike may occur. Thus, the

death of a vulnerability is rarely observer, and the drop in intrusions will most likely be

due to the vulnerability becoming passe. However, there is little empirical date for this

drop-off and is drawn as a steep curve, but this is not backed up by empirical findings.

• The small increase in intrusions between discovery and disclosure follows an exponential

increase as a select group of Black Hats exploit the vulnerability, either because they dis-

covered the vulnerability on their own, or because the vulnerability was being exploited

in the wild. There is no empirical evidence to support this, however if a small group of

black hats is slowly disseminating the information in a controlled manner to prevent mass

proliferation and possible detection, it would make sense for this to grow exponentially, in-

creasing faster as more people discover the exploit and telltheir small group of associates.

This appears to be as complete an image of the most common vulnerability life cycle. The most

disturbing part of this life-cycle is the large number of intrusions that appear to occur well after

the release of a patch. The trends discussed below will further discuss this life-cycle and in

particular highlight aspects of vulnerability, exploit and patch discovery and creation that are

becoming more difficult to manage and justify the solutions laid out in section 3.2.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 16

Figure 2.2: Generalised Model of Empirical Findings

2.3 Vulnerabilities, Malware and Exploitation Trends

The variables in security are a moving target. This section will explain in which direction the

target is moving. A discussion of what the trends are and the likely reasons for them is presented.

These trends are of use in situating any patch management discussion in the reality of the security

landscape. In the context of this discussion, malware exploiting holes due to vulnerabilities

in software are discussed. Other attack vectors such as e-mail, instant messaging and other

confidence tricks are outside the scope of this discussion.

2.3.1 Increasing number of vulnerabilities

The general consensus is that there is an increase in the number of vulnerabilities. This is most

often due to the increasing complexity of software and the increase in the number of software

projects [45]. According to the National Institute of Science and Technology (NIST) [46], it

is estimated that Microsoft Windows 2000 contains 35 million lines of code as compared with

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 17

Windows 95’s 15 million estimated lines and Windows 3.1’s 3 million. Similarly RedHat Linux

7.1 had 30 million lines of code in 2001 up from 170 000 lines inLinux distributions of 1992.

It is estimated that that the number of software bugs ranges from 5-20 per 1000 lines of code

[47]. Thus on these estimates it can be seen that the number ofpotential bugs has grown im-

mensely, however not all of these bugs will result in security flaws and it is difficult to make

these extrapolations. For example the Qmail mail server written by D.J. Bernstein has $500

available to anyone who can find a security vulnerability in the code2, this has been unclaimed

in 10 years; sendmail on the other hand has had a plethora of vulnerabilities in its 20 years [48].

The ’rush to market’ attitude of many software vendors is resulting in code with a higher number

of vulnerabilities per line, often with poor architecturesthat make them difficult to secure post-

completion [49]. In addition, this increasingly complex software is increasingly interacting with

other complex software. The low cost of communication over the internet and its ubiquitous na-

ture is replacing other means of electronic communication,opening systems not designed for the

internet up to new vulnerabilities and creating unforeseensituations between system interactions

[8]. Even if vendors do provide the ability to lock down theirsoftware, it is often not distributed

in a secured state; couple this with a lack of security knowledge among system administrators,

and a security industry that is woefully understaffed and the reason for many of the preventable

configuration errors becomes clear.

The most commonly quoted statistics of the increasing number of vulnerabilities come from the

Computer Emergency Response Team/Coordination Centre (CERT/CC), who compile statistics

for each quarter [50]. These statistics are taken from the Common Vulnerabilities Exposure list

which assigns a common name to every discovered vulnerability. These statistics show that the

number of vulnerabilities are increasing each year. The growth in the number of vulnerabili-

ties each year follows an almost exponential upward trend, except for 2003 where the number

dropped to 2000’s levels. This could possibly be because of the dot.com crash and the result-

ing decrease in technology related work which lead to less vulnerability research, although this

is unconfirmed. In the first two quarters of 2005 the upsurge isdramatic with the number of

vulnerabilities averaging 15 a day compared to the previoushigh in 2002 of 11 a day . How-

ever, the number of vulnerabilities reported by different vulnerability databases is not consistent.

The Open Source Vulnerability Databaseatturllackerssfrom 2283 to 3888 reported vulnerabilities

[51]. In addition the Secunia vulnerability database [52] has shown a rise from approximately

3190 vulnerabilities in 2004 to 4120 in 2005 which is consistent with CVE’s rise.
2Barring Denial of Service or unreasonable exploitation requirements.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 18

As long as the preconditions mentioned above hold true, there is little reason for these numbers

to stop their upward trend. Discussing the seriousness of these vulnerabilities, Eschelbeck [7]

makes two hypotheses: there is a constant discovery of new critical vulnerabilities, this leads to

a situation where half of the most common and critical vulnerabilities are replaced every year

and; these vulnerabilities often have an infinite lifespan due to the continual deployment and re-

deployment of machines with unpatched software. Thus vulnerabilities have a cumulative effect,

where the marginal discovery of vulnerabilities is increasing and the total number of critical

vulnerabilities are increasing as previous vulnerabilities are not being successfully mitigated.

2.3.2 Increasing number of attacks

The number of increasing vulnerabilities has predictably lead to an increase in both the number of

attacks and the number of successful attacks. However, thisis a complicated statistic to measure

for several reasons. To monitor attack trends some statistics as to the number of attacks need to

be collected. However, many attacks are not detected and others are detected by are not reported.

Gathering statistics is a non-trivial task; first, if an attack goes undetected, then quite obviously

it cannot be counted, and second, reporting is driven by the victim and many organisations who

are attacked are either reluctant to report them [53] for publicity reasons, or administrators have

dealt with the vulnerabilities and lose interest [44]. In addition, it is difficult to get organisations

to allow outside entities to monitor their network [53]. An alternative would be to conduct

penetration tests and note the number of reported intrusions. However, this provides an difficult

dichotomy where on one hand it is illegal to attack sites without prior consent but, prior warning

would influence the site’s reporting rate. Worse still, there is evidence that attackers are moving

away from using mass compromises and focusing on more targeted Trojan and rootkit installs

which provides more manageable results and helps to evade detection [16]. The Hacker Defender

anti-detection service provide a service where a semi-unique version of their Hacker Defender

rootkit can be bought and used in a “pointed attack” specifically designed to avoid detection by

anti-virus software by reducing the chances of the anti-virus researchers from crafting a general

detection signature for the rootkit and providing many unique version [18].

This leaves two possibilities for estimating attack activity. The first approach was taken by the

CERT/CC, sites were asked to confidentially report incidents3. However, this approach was ini-

tially difficult with estimates for the number of incidents in 1995 ranging from 1200 to 22800

3an incident could be made up of several attacks

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 19

[54], and was eventually discontinued in 2004 as incidents were so widespread that they “provide

little information with regard to assessing the scope and impact of attacks [50].” The alternative

approach taken by the SANS Internet Storm Center and their DSHIELD [55] project is to receive

submissions on network activity from distributed sites andperform central analysis of the data.

This allows the number of attacks to be better modelled, however it does not provide information

as to how many of those attacks are successful, unless a successful attack displays some obvi-

ous behaviour, this is often true of worm activity but not of human exploitation. Some of the

resulting noise from attacks can be used to perform a back-scatter analysis, this is particularly ef-

fective for Denial of Service attacks [56]. However difficult it is to model attack trends, research

tends to agree that the number of attacks and incidents are increasing every year [54, 57]. Given

the increasing number of vulnerabilities it is hypothesised that this will lead to a higher number

of successful attacks. Indeed, this hypothesis is borne outby the continuing success of auto-

mated self-propagating malware (worms) and their continued activity even after a patch has been

available for several months [8]. This is further corroborated by DSHIELD which has seen the

average time between attacks drop below five minutes in both August 2005 and September 2005.

This time to liveor survivabilitystatistic gives an unpatched machine less time till it is compro-

mised than it would take to download and deploy the necessarypatches [58]. It is clear, however

that not enough public research is being conducted in threatanalysis. If the security community

had more information on what was occurring in ’the underground’ less coarse assumptions of

worse case scenarios would be possible.

There are several reasons as to why the number of attacks are increasing. CERT/CC identifies an

additional six trends, three of which are relevant [59]:

1. The increased automation in attack tools has lead to faster and more widespread exploita-

tion due to several advancements. Advanced scanning techniques are regularly employed,

for examplescanrand4 can portscan a network in record time[60], while nmap5 can de-

ploy a variety of stealthy scanning techniques. The releaseof exploit code has historically

heralded the advance of script kiddies6, however running and managing these exploits is

becoming even easier with tools such asmetasploit7, which allow for point and click ex-

ploitation and provide a toolkit with which future exploitscan be rapidly developed. When

4http://FINDOUT/
5http://insecure.org/
6Less experienced cracker who use tools provided by more experienced authors to break into systems.
7http://metasploit.org/

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 20

the advanced scanning is coupled with automated exploitation (in tools such asAutoScan8)

an entire network block can be stealthily scanned and trivially exploited if the discovered

systems are vulnerable. This exploitation often has the ability to propagate allowing a

malware creator to compromise several hosts without much involvement, and has proved

particularly successful among the most vulnerable, home users. This has provided an in-

crease in the coordination of distributed attack tools, allowing large bot nets to be used in

massive distributed malicious activity.

2. Attack tools are becoming increasingly sophisticated and complex. This is making attack

detection and prevention increasingly difficult. This sophistication is being packaged in

modular code and redistributed. This makes it possible for arelatively inexperienced user

to launch a highly sophisticated attack utilising a range ofdifficult to detect payloads,

ranging from reverse shells to DLL uploaded ssh servers, with the metasploit framework.

In addition, the modularity of these tools allows differentmethods to be recombined and

reused, which makes detecting a defined set of steps more difficult. Thus malware authors

can rapidly create several different iterations of one piece of malware in an attempt to avoid

detection by anti-virus software [16].

3. Increased permeability of firewalls. The advent of HTTP asthe dominant protocol has

caused a shift where services are no longer differentiated by port, but are multiplexed over

one port with protocols built on top of HTTP. For example corporate e-mail filtering poli-

cies become meaningless to users utilising web based e-mailservices such as Gmail or

Hotmail. The threats these services can introduce lead the US military into blocking ac-

cess to web-mail products on their unclassified networks [61]. The rise of services such

as instant messaging and e-mail move much of the content control decision making from

the firewall, to the end-user. Attackers have recognised this and now employ a variety of

attacks which exploit trust in the end-user using confidencetricks [16]. Phishing, pharm-

ing, mistyped domain squatting, spreading via e-mail or instant message are all examples

that ’trick’ the user. There is no need to look for a vulnerability in a firewall when you

can instant message a trojan to several users. Moreover, mobile devices and portable stor-

age now allow malware to piggy back its way through a firewall via the sneaker-net9. It

is very difficult to control every laptop, USB flash-stick, digital camera, MP3 player and

memory card that comes near a network. This can render mobiledevices one of the most

8http://autoscan.free.fr/
9The sneaker net refers to the manual networking brought about by people physically walking devices from one

place to another.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 21

common infection vectors for an organisation. This has allowed attackers many more tar-

gets; no longer are only internet facing servers vulnerable, an attacker could potentially

compromise any machine in the organisation, particularly end-user desktops.

2.3.3 Exploit window shrinking

The time between the release or announcement of a vulnerability and the release of public exploit

code is known as the exploit window. This statistic is widelyreported and agreed upon by many

researchers [44, 2, 7, 59, 17, 16, 62]. Indeed, the evidence seems to agree; the Nimda worm

appeared a year after the vulnerability had been announced,the SQL Slammer worm appeared

after six months, Slapper took six weeks, Blaster halved that to three weeks, Sasser took two

weeks, Zotob appeared after five days and the fastest vulnerability to worm cycle to date has

been the Witty worm which appeared 36 hours after the vulnerability was announced [63, 64].

The time from the disclosure of the vulnerability until the release of a scripted exploit, the win-

dow of exploitation, is the most significant indicator of when a vulnerability has progressed from

a theoretical discussion to both a likely to occur and likelyto be successful attack. A quick look

at the exploit window for previous worms shows that the exploit window appears to be shrinking.

This hypothesis is confirmed by several sources [62, 8, 53]. In addition the exploit window ap-

pears to be shrinking faster than the remediation window. A powerful example of this reduction

is the emergence and growth of 0-Day(Zero Day) exploits. Theterm ’Zero Day’ traditionally

refers to an exploit for an undisclosed vulnerability, but is increasingly used to refer to scripted

exploits released on the same day as the vulnerability was disclosed. In both situations the exploit

window is but a few hours.

CERT/CC hypothesises [53] that underground groups could beprivately hoarding exploit tools

which could be made public immediately when a vulnerabilityis released, thus skewing the time

from public disclosure of a vulnerability until public disclosure of an exploit. However the most

likely reason as to why the exploit window is shrinking is an increase in sophistication of exploit

development tools [59, 53]. Some of these advances are:

1. The metasploit framework provides templates for many combinations of exploits types,

payloads and target operating systems. An exploit can be rapidly created by utilising the

metasploit framework which reduces the amount of effort required in development and

provides access to a far greater range of sophisticated payloads.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 22

2. The increase in abuse of web applications makes exploit development quite easy [65].

Vulnerable software can be easily found through search engines [66], the source code is

easily available allowing an attacker to find vulnerabilities faster and often exploitation just

requires a simple request. The requests can be rapidly developed with tool such as the Perl

LWP module or Metasploit.

3. It is becoming increasingly easy to reverse-engineer patches to find and exploit the vulner-

ability they are supposed to repair. In a recent demonstration the MS05-025 patch from

Microsoft was reverse-engineered in twenty minutes [67]. This rapid turnaround means

that it should be assumed an exploit exists a few hours after apatch is released.

4. The re-use and modularity of existing malware. This is particularly true of worms and

bots. There are several propagation methods from mass-mailing to exploitation which a

worm author can pick and choose. In addition modifying existing worms to utilise new

exploitation techniques or incorporate new payloads is fareasier than writing a new one.

The number of variants of the more popular worms such as Soberand Bagle are a testimony

to this [64].

All of these advances contribute to making exploit development easier and faster, and future

advances will only reduce this window.

2.4 Problems with Patches

The vulnerability cycle described in figure 2.1 above assumes that the number of intrusions would

start to decrease after the release of a correction or patch.This decrease should continue until

the number of vulnerable machines reaches some negligible value and the vulnerability reaches

the last stage of its cycle. However, both Eschelbeck [8] andBrowneet al.’s [44] research shows

this is not the case. A large number of notable worms within the last few years have exploited

vulnerabilities for which a patch already exists. In addition, there are cyclical re-infections in the

long-term resulting in an infinite vulnerability life-cycle [8, 44]. This demonstrates that patches

are not being deployed to a large number of machines, and for the few that are, with half the

most prevalent vulnerabilities being replaced every year [8], the patch treadmill is here to stay. In

some cases the notification of vendors has been poor and patches have gone uninstalled because

administrators either didn’t realise there was a patch or didn’t realise its importance. However,

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 23

even when there is ample notification research by Rescorla [68] showed that in the case of a

critical vulnerability in software more likely to be patched (OpenSSL), after two weeks 60% of

vulnerable servers were still unpatched. Anecdotal evidence points to a variety of problems with

patches that prevent them from being rapidly and regularly deployed [39]. Solutions to these

problems and others are provided in the next three chapters.Chapter 3 describes how users of

software can best manage patches coming from vendors, chapter 4 describes how vendors can

best prevent the sorts of problems described below and chapter 5 describes technical solutions

that can be used to ease the process.

2.4.1 Unpredictable Patches

A security patch should remove or mitigate a vulnerability,no more and no less. However, this

does not always happen. Patches sometimes break the servicethey are supposed to repair, intro-

duce changes that break compatibility and interoperability, add new unwanted features, introduce

new vulnerabilities, re-introduce old vulnerabilities or, in some cases, fail to repair the original

vulnerability [2]. When there is a problem with a patch the vendor usually re-releases it. This

brings its own set of problems such as removing and replacingthe faulty patch and duplicat-

ing patch downtime and effort. There are numerous examples of faulty patches, and plenty of

anecdotal evidence available on various support forums to make administrators wary of faulty

patches. The cost of applying a patch is increasingly betterunderstood, however the costs of

potential patch failures weighed against the costs of not applying a patch is a risk trade-off many

are ill equipped to make. According to Beattieet al. this skews the risk analysis towards not

applying a patch [2], establishing a situation where administrators are reluctant to apply patches

for fear of creating a problem worse than that presented by the original vulnerability.

Some vendors choose to provide specific patches allowing andadministrator to limit the change

introduced be a patch, by providing a specific patch for a specific issue. The Debian security

team even goes so far as back-porting security fixes to the older ’stable’ software version. This

can create problems with multiple patches over time. Some patches deprecate or depend on

other patches, without careful planning and an intelligentpatch tracking scheme these inter-

dependencies can result in undefined results. To avoid this it is also useful to provide cumula-

tive patches which contain multiple past patches, with the inter-dependencies pre-computed and

tested, to ease bringing a newly deployed software instanceup-to-date with its patches. However,

some vendors find implementing proper patch tracking difficult and opt for cumulative patches

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 24

only, thus maximising the change administrators make to their systems and increasing the chance

of a patch breaking something. The lesson to vendors here is simple, keep patches specific and

effective.

Section 2.4.6.1 provides a good example of how a patch can cause unwanted results.

2.4.2 Too Many Patches

As the number of vulnerabilities announced each year grow, so too do the number of corre-

sponding patches. Each patch requires a significant amount of work before it can be deployed

and forgotten about. The full process is discussed in chapter 3. The amount of time required to

discover patches, research their related vulnerability, test the patches and then make risk man-

agement decisions far exceeds the time provided by the shrinking exploit window. Worse still,

the exploit window is shrinking faster than the remediationcycle. There are several inefficiencies

in the remediation cycle which exacerbate the problem.

Often patches are released by multiple vendors via different mechanisms which can make mon-

itoring for and installing patches involve a large duplication of effort and thwart organisational

centralised patch distribution programmes. For example, users of Microsoft Windows and Adobe

Acrobat will need to integrate both Microsoft and Adobe’s patch distribution infrastructures.

The unstable nature of patches requires that an organisation perform thorough testing of each

patch. However, particularly for large organisations withmany machine and software config-

urations duplicating every relevant configuration and interaction between critical applications

can prove arduous. When this process is applied across several patches it can quickly become

untenable.

Vulnerabilities in libraries on which many applications depend can require that each version of

the vulnerable library is patched. This can create a situation where sometimes one vulnerabil-

ity requires several patches from several different software vendors. This combines the above

two problems to create a situation where both the problem of multiple distribution methods and

complex testing lead to a deployment cycle which far exceedsthe window in which attackers are

most active. This is demonstrated below in the GDI+ JPEG vulnerability discussed in section

2.4.6.2.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 25

2.4.3 Window to Patch is Shrinking

As the window from vulnerability to exploit deceases (described in section 2.3.3) so too does

the windows of time available for patching. The vulnerability life-cycle described in section 2.2

showed that the scripting of the exploit was the significant factor in any increase of intrusions.

Thus, for an administrator to avoid a significant level of attacks the patch or mitigation should

be deployed and working before the release of the exploit. Inthe case of the Witty worm [38],

the exploit was released just thirty six hours after the announcement of the vulnerability. This

is not enough time to perform even basic vulnerability assessments and patch deployments, let

alone provide significant testing on the patch, a crucial step to avoid the problems with unstable

patches. In some cases this may not be enough time to notify users and have them download the

patch.

The shrinking of the vulnerability to exploit window is not the only factor in the decreasing

patch window. While the scripting of the exploit leads to a significant increase in attacks, this

is not to say there are not attacks before this time. When an exploit is scripted it becomes

available to a large group of people, often termed script kiddies, who do not have the skill, or

money to buy the skill, to write an exploit themselves. Following this logic, the largest threat of

potential attack before the scripting of an exploit are the group of people with skills or money.

So, while an organisation may not yet be at threat from automated worms wreaking havoc it may

be vulnerable to other activities such as corporate espionage. As security threats on the internet

becomes increasingly criminalised, the threat from such attacks increases. Unfortunately there is

very little public research into the activities of skilled attackers and the trends surrounding their

activities. However, when a serious vulnerability is announced there is usually a large increase

in activity on the vulnerable port as detected by organisations such as DSHIELD [55]. Ideally a

patch or mitigation should be deployed before this time to prevent possible attacks in the future.

The vulnerability and exploitation trends discussed in theprevious section shows that the ad-

ministrator does not have the luxury of time. Thus, and uncomfortable trade-off exists with two

conflicting pressures when timing the application of a patch, a pressure to wait for the patch to

be tested by the community to prevent the problems of unstable patches and a pressure to patch

immediately to prevent exploitation.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 26

2.4.4 Complex Patches

Not every patch is simple to deploy. While research is being put into creating easy to install

and distribute patch packages [69, 70], the complexities ofsoftware interconnectedness often

manifests itself. Programmers often use functionality provided by shared libraries to prevent

having to reinvent the wheel and minimise the size of their applications. The result of this is that

applications often have several dependencies. Thus, if oneof the core dependencies is patched,

this could potentially affect every application dependingon it. Additionally, some applications

may depend on different versions of another application, requiring several versions of a library

to be installed.

However, dependencies don’t apply only to applications, patches too, often have their own de-

pendency hierarchy. Sometimes one patch may be required to be installed before another. This is

not always a strict dependency, for example in the case of a recent patch against a vulnerability

in Windows Meta Files [71] an unofficial patch was provided until Microsoft could release an

official patch. There was no specific patch dependency tree one patch could be deployed without

affecting the other, however if the unofficial patch was removed before the official patch was

installed, the machine would be left vulnerable for the period of time in between. Thus it was

necessary for an administrator to first install the official patch then remove the unofficial one, a

rather unintuitive process.

The examples provided in section 2.4.6 both demonstrate this ’dependency hell’ quite well.

2.4.5 Hard to obtain patches

The problems with patches are not always in the deployment, getting hold of them in the first

place can sometimes be problematic. There are many reasons why this could happen, although

this is becoming rarer as software vendors become aware of the importance of patching. There-

fore, many of the problematic patch deliveries are occurring within smaller software products

and companies who do not have a defined patch release and management policy. Some of the

problems faced are:

1. Poor notification. After the bitterly fought full-disclosure debate the notification of vul-

nerabilities and their corresponding patches has greatly improved. However not everyone

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 27

has cottoned on. For example a flaw in Google’s on-line mail client, Gmail, disclosed on

Oct 14th 2005 and patched four days later was never publicly acknowledged by Google

[72]. While Google did not need to distribute a patch, it is still disturbing that such a

large software vendor believes it does not need to notify anyone of the flaw and its fix.

Other examples often include open-source software products which have a brief entry of

an undisclosed security vulnerability in the Change Log of the latest release [73]. Without

obvious disclosure of the vulnerability and correspondingfix, users are likely to stick to

older versions for longer if there is no other significant reason to upgrade.

2. Unregistered software. Some vendors will only issue patches to software holders with a

valid and verifiable license. This is problematic for two reasons. The first is that organ-

isations with legitimate licenses may have too many machines or a unique configuration

which makes registering each machine difficult. The second is that users of pirated soft-

ware (which in the case of Microsoft products is no small minority), while they shouldn’t

benefit from their unethical behaviour, can impact legitimate users of the software if their

software were to become infected with self-propagating malware that affected shared net-

working resources because they could not patch their software. Microsoft flirted with this

idea with their ’Genuine Advantage’ program [74] but soon relented and have made secu-

rity patches available. However, other proprietary vendors such as Solaris and Oracle still

require the purchase of a support contract or some other formof verification [75, 76].

3. Limited bandwidth. Some users and organisations either due to ineffective telecoms regu-

lations, limited network infrastructure or limited funds with which to purchase bandwidth

or a combination of these may not have enough bandwidth at their disposal to rapidly

download patches. Much of the patch management effort has assumed access to broad-

band connectivity. In bandwidth starved countries such as South Africa and other emerg-

ing information economies (Brazil, India etc.) where many small organisations have only

an expensive dial-up or ISDN line, spending several hours downloading security patches

is not a suitable solution and often results in patches just not being applied. The corol-

lary of this is that it is unlikely their machines would participate in any large scale worm

propagation outside of their organisation, a bitter-sweetconsolation for the administrators

performing the local mop-up operation.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 28

2.4.6 Problem Patch Examples

Some of the potential problems patches can create are best illustrated by examples. Two such

’problem patches’ are discussed below. The first demonstrates how a patch can fail to effectively

fix a vulnerability, re-introduce a vulnerability or conflict with existing software. The second

demonstrates how difficult it can be to discover which applications are vulnerable and ensure all

traces of a vulnerability are patched.

2.4.6.1 SQL Slammer/Sapphire Worm

On July 24, 2002 Microsoft released the MS02-039 [77] patch for SQL 2000 Server and Mi-

crosoft Desktop Engine 2000 (MSDE) which patched critical buffer overflows. The overflows

could be triggered by sending trivially small UDP packets toport 1434. One day over 6 months

later, the SQL Slammer or Sapphire worm was released in a 376-byte UDP packet. According to

an analysis by the Cooperative Association for Internet Data Analysis (CAIDA) [78] the worm

infected at least 75 000 hosts. Mooreet al. [78] had this to say about its spread:

In the first minute, the infected population doubled in size every 8.5 (±1) sec-

onds. The worm achieved its full scanning rate (over 55 million scans per second)

after approximately three minutes, after which the rate of growth slowed down some-

what because significant portions of the network did not haveenough bandwidth to

allow it to operate unhindered. Most vulnerable machines were infected within 10-

minutes of the worm’s release. Although worms with this rapid propagation had

been predicted on theoretical grounds, the spread of Sapphire provides the first real

incident demonstrating the capabilities of a high-speed worm. By comparison, it was

two orders magnitude faster than the Code Red worm, which infected over 359,000

hosts on July 19th, 2001. In comparison, the Code Red worm population had a

leisurely doubling time of about 37 minutes.

The only hindrance to the worm appeared to be its own effectiveness. It managed to infect a

huge number of machines, even though the patch had been released a significant amount of time

earlier. The time-line of the patch possibly shows why so fewhosts had been patched 6 months

later.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 29

The vulnerable library patched by MS02-039 was ssnetlib.dll, later Microsoft released further

patches for SQL Server. On August 14 they released MS02-043 [79] which contained the same

version of ssnetlib.dll as MS02-039. On October 2 they released MS02-056 [80] which included

a newer version of ssnetlib.dll. On October 16, Microsoft released a cumulative patch, MS02-

061 [81] which contained all changed applied by MS02-{039,043,056}. However, on October

30 Microsoft released a security hotfix Q317748 [82] to fix a handle leak in SQL Server 2000

Service Pack 2. The hotfix contained a version of ssnetlib.dll released previous to MS02-039’s

version, thus reverting the fixes made in MS02-{039,043,056} and MS02-061, and reintroducing

the vulnerability [83]. Thus, a fully patched system was nowvulnerable to several previously

fixed vulnerabilities. In addition, the precedence of patches was unclear, and users were unsure as

to whether the patch should be installed and then the hotfix orvice-versa. Microsoft re-released

the hotfix with a corrected version of ssnetlib.dll and re-released MS02-061 [81] to include the

hotfix on October 30. However, the worm only hit 3 months later, which should be enough

time for a significant number of machines to be patched. The lack of patching could have been

because notification of the problems Microsoft repaired were not widely disseminated, leaving

many machines vulnerable. Particularly given the wide inclusion of the MSDE in third party

applications, resulting in many non-security conscious user’s machines being infected. Russ

Cooper, editor of NTBugTraq only posted his understanding of the changes on January 28 after

the worm had hit [83].

On January 20 Microsoft released SQL Server Service Pack 3 (SP3) [84] which contained a

significant number of changes, including an up-to-date version of ssnetlib.dll. Given the large

number of changes, regression testing on Service Packs can often take significantly longer than

the testing required for smaller patches. Of the few who did deploy SP3, it was found that

there was a conflict with Best Software’s MAS 500 accounting package which required users

to reformat their machines. Currently Best Software only certifies their software to work with

patches up until MS04-021 [85], indicating the difficulty third-party vendors and consumers face

in avoiding conflicts from patches. Thus, when the worm hit five days later at 5:30 on a Saturday

morning (UTC) [78] many administrators either thought theywere patched and were still testing

SP3. Of the many organisations crippled by the worm, Microsoft was one [86], indicating that

even they had found the patch soup surrounding the worm difficult to manage.

It should be noted that it is unlikely that all patches will provide this many problems, Slammer

was a particularly bad example that allowed for a concise demonstration of some of the problems

related to patching. The fiasco surrounding Slammer demonstrates that patching is not always

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 30

straight forward. Often several versions of a patch exists and must be applied in a specific

manner. Sometimes those patches fail to remediate the vulnerability or expose an organisation

to new vulnerability (or re-open old ones). Also, patches are not guaranteed to be compatible

with every specific configuration and application and a significant amount of testing is required

before they can be deployed.

2.4.6.2 GDI+ JPEG Vulnerability

On September 14 2004 Microsoft released MS04-028 [87] whichdescribed a vulnerability in the

way the GDI+ library processed JPEG files. Thus an attacker could craft a malicious JPEG file

that could execute code on a victim’s machine. This type of vulnerability is particularly danger-

ous as many users and applications don’t associate picturesas potentially malicious and often

view or process them without thinking or confirmation. For example, Google’s Desktop Search

application automatically indexes images, which could trigger the vulnerability if a malicious

JPEG is indexed, without user interaction [88]. In addition, viewing JPEGs is supported by a

large number of applications creating a very large attack vector. Thus the risks were such that

administrators should expedite deploying the patch.

Deploying the patch was, however, a non-trivial task. The GDI+ library (gdiplus.dll) can be run

side by side with other versions of the library [89]. The ubiquitous nature of JPEGs and the

resulting number of affected applications, both Microsoftand third-party, had their own versions

of gdiplus.dll installed. Thus, deploying the operating system patch alone was not sufficient

to mitigate the vulnerability. For example even though the version of gdiplus.dll bundled with

Windows XP Service Pack 2 was not vulnerable, an installation of Microsoft Office 2003 would

make it vulnerable. To help with this, on October 12 Microsoft released the MS04-028 Enter-

prise Update Scanning Tool [87] which would scan for Microsoft applications which contained

a vulnerable version of gdiplus.dll and update it. A necessary task considering that Microsoft’s

advisory on the issue [87] lists over 50 Microsoft applications which are vulnerable with links to

over 30 additional updates for individual software.

Even if an administrator managed to find and patch all vulnerable Microsoft software, there were

still many third party applications vulnerable. To help with this a third-party tool was created

by Tom Liston of the Internet Storm Centre (ISC) [90] which scanned for potentially vulnerable

versions of the DLL. This tool only helped in discovering vulnerable applications, a user would

still have to get hold of a specific patch from that application’s vendor.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 31

Thus, to repair one vulnerability an administrator would likely have to run two separate scanning

applications and deploy a significant number of patches, demonstrating how it is not always a

simple point-and-click case of one-vulnerability-one-patch. The complexity of software and its

inter-dependencies is carried through into patching.

2.5 Conclusion

This chapter serves to provide an examination of the currentproblems and trends that contribute

to the difficulty and need to manage patches and vulnerabilities. First the life-cycle of vulner-

abilities was introduced and discussed. There has been muchresearch into several aspects of

the vulnerability life-cycle, and the resulting life-cycle provides significantly more insight into

the process than previous life-cycle’s have assumed. The solid understanding of the way in

which vulnerabilities are introduced, disclosed and remediated provides a platform from which

the trends and issues surrounding this cycle are discussed.Several problems and trends in vul-

nerabilities, malicious software and attacks were discussed. It was shown that:

• The number of discovered vulnerabilities is increasing every year.

• The number of attacks on those vulnerabilities and on older still unpatched vulnerabilities

is increasing.

• The release of a scripted exploit results in the largest increase in attack rate and the time

between the disclosure of a vulnerability and the release ofa scripted exploit is decreasing.

Patching provides an effective method of finally remediating a vulnerability and can provide a

powerful defence against these trends. However, these trends impact the creating, release and

deployment of patches. In addition, patches have several pitfalls of their own. These were

discussed and it was shown that:

• Patches do not always behave as expected and can sometimes break things instead of fixing

them

• The increasing number of vulnerabilities is resulting in anincrease in the number of

patches, which can often be overwhelming

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 32

• The decreasing vulnerability to exploit window results in asmaller window in which

patches need to be applied, however other problems with patches are resulting in a de-

ployment time frame which exceeds this window

• Patches are not always straightforward to deploy, often thecomplexity of the underlying

software results in complicated installation procedures

• While vendors are improving, it is not always easy to get holdof patches or notification of

their release.

These findings constitute a problem statement for which a patch management programme must

provide solutions. Understanding these problems and theircauses allow a security professional

to design and implement policies, procedures and technologies to respond to these threats. The

next chapter discusses how an organisation can do this by implementing an internal policy for re-

mediating vulnerabilities by patching. This discussion isthen expanded to include how a vendor

can best respond to these threats in the next chapter. Finally, in chapter 5 advice on the technical

solutions available to improve patching and vulnerabilitymitigation are discussed.

Chapter 3

Policy Solutions

3.1 Introduction

In the previous chapter a discussion on the difficulties faced in managing vulnerabilities and

dealing with patches was had. This provides a basis from which the advice on how best to

respond to this situation can be discussed in this chapter.

As the threats evolve and the vulnerability landscape shifts, so too must patch management. The

trends described in Chapter 2 showed how patching is increasingly necessary and is a non-trivial

task that brings with it its own problems. The trends showed that the problems are getting bigger

and that there is less time in which to solve them. At the beginnings of this project we believed

that a software solution would be able to solve the intricacies of patch management. Resclora [4],

for example, believes that if automatic patching were more widely deployed the costs incurred

due to intrusions would decrease. However, later in the sameparagraph Resclora states “any

measures which improve the rate of patching [...] are likelyto pay off.” We soon realised

thatautomated patchingis not sufficient on its own to improve therate of patching,due to the

complexity and inherently fuzzy nature of managing patches. Given the trends discussed in the

previous chapter, the speed at which patches can be deployedis one of the most important issues

a patch management solution must provide. While the burden of patching can be eased with

effective tools, it cannot be completely managed by them. Patch management is a risk trade-off.

It requires information from many sources (asset management, network monitoring, vulnerability

lists, patch lists), and integrates with existing processes (risk management, change management,

33

CHAPTER 3. POLICY SOLUTIONS 34

vulnerability management). A software tool may help integrate these process and centralise the

information-gathering efforts, but in the end someone is required to evaluate this information and

make a decision. Chan [91] and Schneier [41] both believe that patch management is inherently

a technology problem, but that a sole focus on technology is insufficient. A quotation from the

ISO/IEC 17799 document states “The security that can be achieved through technical means

is limited, and should be supported by appropriate management and procedures.” [92] This

chapter follows this line of thought and focuses on the management and procedures that can be

implemented to ensure that patch management and not just patch deployment can effectively

occur. To this end, a comprehensive patch management policyis required. An organisation must

have a process for managing patches and gathering relevant information to make an accurate

decision. To quote MacLeod [93]:

“Any organisation implementing a well though out patch management process is

on the right track to reducing its exposure and risk to published security vulnerabili-

ties.”

This chapter details an organisational patch management policy framework. It describes a pro-

cess for effectively managing security patches within an organisation with practical advice on

implementing such a policy.

3.2 Patch Management Policy

The rise in recent patch management research has resulted ina large number of best practice

policy documents being released. The problem with existingpolicies is that their focus is too

often only on a few elements of patch management. For example, one might focus on asset man-

agement and decision making, while another might focus on deploying patches and the software

necessary to do so. What is lacking is an intelligent synthesis of the available information into

one body of knowledge. The recommendations and steps enumerated below achieve this syn-

thesis, based on four such existing policies. The first is an early paper on patch management

by Chan entitledEssentials of Patch Management Policy and Practice[91]. The second is a

paper by Voldal [94] entitledA Practical Methodology for Implementing a Patch Management

Process. These two papers were the subject of an early iteration of this work [95]. The third pa-

per is NIST’sPatch and Vulnerability Management Program, special publication 800-40 version

CHAPTER 3. POLICY SOLUTIONS 35

2.0 [46], by far the most comprehensive of the documents. Lastly, Sun Microsystem’sSolaris

Patch Management: Recommended Strategy [3]contained valuable insight. These policies were

specifically chosen because of the depth and breadth of strategy and ideas they presented. NIST’s

work is highly regarded and used to maintain federal systemswith strict requirements and regula-

tory conditions. Sun’s document represents the thoughts ofa large vendor, one of the first to start

discussing patch management. Voldal’s paper is, at the timeof writing, the only best practices

paper on implementing a patch management policy available from the SANS reading room1,

an excellent and well regarded resource for technology professionals. While, Chan’s paper is

both well regarded in its own right and published by an influential security organisation, @stake.

These policies form the basis of the work to follow, however the result is greater than the sum

of its parts. Other documents are referenced when necessaryand this researchers own insights

are added. Specific technologies will not be discussed, but rather a process oriented, technology

agnostic look at what needs to be done, whether automated or manual, will be discussed.

The main aim of thispolicy is, as defined by Chan “to create a consistently configured environ-

ment that is secure against known vulnerabilities in operating system and application software”

[91]. However, the end goal of thisdiscussionis to provide a reference for an organisation

looking to design and implement their own patch management policy from the ground up, or to

enhance an existing policy. This discussion falls under theumbrella of best practice and provides

a utopian framework, as such it is not necessary for every organisation to implement every step,

smaller organisations may combine several steps into one for example. While insight into all

aspect of managing patches in available, this section is geared towards an organisation looking

to manage its computing assets, rather than the home user.

3.2.1 Patch and Vulnerability Group

A policy is of little use without stakeholders assigned the responsibility of managing and control-

ling its running and implementation. NIST recommends that apatch and vulnerability group be

established [46, pg VII]. The size, make-up and operation ofthis group can vary widely across

organisations. In smaller companies, and depending on budget, it may be the additional respon-

sibility of a systems administrator, whereas in larger companies it could be a cross section of

relevant people from various departments, divisions or branches. The patch and vulnerability

1http://rr.sans.org/

CHAPTER 3. POLICY SOLUTIONS 36

group will be responsible for gathering information, implementing the policy, reporting to man-

agement and disseminating relevant information across theorganisation. The group should be

differentiated from a general security group, which if it exists, should remain a separate group.

Patching is only as useful as the security of the organisation. There is no point expending a large

amount of effort on managing patches if all the machines and services have been left with poor

default configurations and no hardening effort has been expended.

It is recommended that the group be made up of system administrators, network administrators,

security staff and IT support staff. The wide impact of patchmanagement and need for integra-

tion with other security and policy systems requires a diverse group. This group should have

the support from top management, the authority to perform their functions [94]. The position of

the group within the organisational structure is specific toeach organisation, although a group

that cuts across many departments would provide a better understanding of the organisations

configuration and provide someone to drive patching in each department. The group could also

have subgroups which operate in different parts of the company. Whatever the operation of the

group, having a centralised resource and a primary patch andvulnerability management group

overseeing the whole organisation’s patching is essential.

3.2.2 Security, Stability, Functionality Patches and Workarounds

The policy outlined will deal primarily with security patches and workarounds for security issues.

A brief justification for this fact is that, the current difficulty in dealing with security patches is

the reason for implementing such a policy, as other types of patches can be handled by and fall

within normal maintenance and upgrade change control cycles. In more detail, security patches

need to be installed more often, at least once a month and often more regularly than that, regular

maintenance cycles are usually designed to be run less often, usually annually. Security patches

are also more important, the risks of not patching (suffering an intrusion) are far higher that

those faced by non-security patches. Additionally, the installation of security patches needs to be

expedited to deal with the unique risks security vulnerabilities introduce (see section 2.3). The

need for deployment speed is in contrast to the nature of the steps required during maintenance

such as adequate and thorough testing, which in the case of non-security patches does not need to

be rushed, but may require certain trade-offs when deploying security patches. Security patches

are also less hard to not install, while other defences are getting better, without an effective

workaround it is likely that most security patches will needto be installed. Whereas non-security

CHAPTER 3. POLICY SOLUTIONS 37

patches can often be ignored if the problem has not manifested itself, there is no guarantee that

an attacker will not try to exploit any available vulnerability. Security workarounds fall into the

same category as security patches here, the changes introduced will still need to be tested and

the effectiveness and risks of the change must be looked examined in the same manner that a

security patch would. Both security workarounds and patches have more urgency attached to

their deployment. The only real difference is that the distribution methods of workarounds and

patches may sometimes differ. A breakdown of the different types of patches and remediation is

provided in table 3.1.

CHAPTER 3. POLICY SOLUTIONS 38

• Security Patches

– installed more frequently

– higher risks of not patching

– unique requirements

– fewer alternatives

– needs to be deployed even for non-critical services

• Security Workarounds

– same requirements as a security patch

– usually easier to implement

• Stability Patches

– lower risks, threat already exists

– only required if corresponding stability problem exists

– is accommodated within normal maintenance cycles

• New Functionality/Features Patch

– low risk, threat does not exist

– only required if business needs dictate it

– is accommodated within normal upgrade cycles

Table 3.1: Types of Patch and Remediation Summary

3.2.3 Policy

This meta-policy framework contains eight steps, each describing a step that should occur with-

ing the patch management policy implemented by the organisation. Each step has a wide range of

variables that will need to be tweaked and set to reasonable standards within the organisation and

relevant to the organisational and operational business context. These are considered best prac-

CHAPTER 3. POLICY SOLUTIONS 39

tice guidelines for implementing a policy for managing security patches within an organisation.

A breakdown of each step is provided in table 3.2.

1. Information Gathering

• Host and asset inventory
• Patch and vulnerability research
• Exploit and threat research

2. Risk Assessment

• Patch and security threats
• Patch and security impact
• Assessment

3. Scheduling and Patching Strategy

• Define patch schedules
• Minimise change

4. Testing

• Mirror production environment
in test lab

• Check: patch authenticity, de-
pendencies and requirements,
whether vulnerability is remedi-
ated, conflicts with other appli-
cations

• Create repeatable steps to verify
patch installation

• Test back-out and undo steps

5. Planning and Change Management

• Proposed change
• Contingency and back-out plans
• Risk mitigation
• Patch monitoring and accep-

tance

6. Patch Deployment and Installation

• Automate where possible
• Secure patch distribution mech-

anism
• Utilise technologies to speed

patch distribution

7. Verification and Reporting

• Verify patches were installed to
all relevant machines

• Follow contingency plans if
patch is faulty

• Generate Metrics
• Report and document progress

8. Maintenance

• Analyse policy for improvement
• Train staff

Table 3.2: Patch Management Policy Summary

CHAPTER 3. POLICY SOLUTIONS 40

3.2.3.1 Information Gathering

The information gathering phase is a required input for making informed and accurate decisions

and provide proper risk analysis. This is an ongoing phase that will have inputs from many of

the other steps and is the primary input into the risk management phase.

Asset & Host Management For a patch management process to be effective you need to know

which machines are utilising your organisation’s network,what software they are running and

which previous patches (both security and functional) or modifications to the software have been

applied. This is necessary at the very least to figure out which machines are affected by which

vulnerabilities and hence require patching. Further information is particularly useful in making

risk management decisions; the ability to anticipate the possible effects of a vulnerability or patch

is invaluable for minimising disruption and cost while maximising availability. This should not

be a once off process, but continuous to ensure detection of new machines entering the network.

To achieve this a passive method that does not require software to be installed onto machines is

required, thus allowing the discovery of all new machines.

Typically the kind of information collected about each machine should include the system’s

hardware, operating system, application software, location (both physical and logical), the per-

son responsible for its administration and its function (end-user machine, print server etc.). For

both the operating system and application software (and possibly firmware) details of the current

software version, all applied updates and patches should becollected [94, 3]. While each policy

provides examples of various details that can be recorded, NIST’s provides the most comprehen-

sive list of possibly useful information [46, pg 2-4]. For servers, additional information such as

the services they have been authorised to run can be recorded[94].

Systems should then be grouped and assigned a criticality orpriority level. Grouping should

be appropriate for the organisation and can be grouped alonga variety of differentiators. While

NIST defines stringent criteria for grouping [96] American federal resources the other policies

leave it entirely up to the organisation. Example groupingsare:

• according to departments

• the user base

CHAPTER 3. POLICY SOLUTIONS 41

• primary function

• managerial control.

These groups should then be given a priority rating. Voldal’s [94] policy document recommends

classifying these groups into one of three priority levels,although they can be further broken

down:

• Mission critical. Machines providing services critical tothe business operation. e.g. Ama-

zon’s Web Servers

• Business critical. Machines providing important servicesthat can tolerate short breaks in

service. e.g. E-mail servers or machines that aren’t used after hours

• Operational critical. Machines providing non-critical services. e.g print servers

Factors such as the importance of the server’s data and the consequences of downtime should be

used when determining priority levels. Also the ease in which the machine can be rebuilt in the

event of an intrusion In addition, the vulnerability to attack of the server should be noted and used

to modify it’s priority; for example publicly accessible machines or high profile targets should be

given a higher priority [94, 46, pg 2-6]. It is important alsoto take note of system interconnects,

as a lower priority system may provide an attack route to a higher priority one, thus an internet

facing non-critical print server (a silly thing to do), while not mission critical should have a

higher priority due to the increased risk of attack and possibility for further compromise. This

classification will be useful in determining the seriousness of a vulnerability and other actions

such as whether a patch should be installed immediately or not. Without this classification an

organisation may embark on costly patching and mitigation projects that aren’t necessary, or

cause further avoidable problems [46]. The information collected and determined here will be a

direct input into the risk management decisions described later. The broad groups and the factors

influencing priority are summarised in table 3.3.

CHAPTER 3. POLICY SOLUTIONS 42

Broad Priority Groups Description

Mission Critical Services and machines the organisation could not continue without.

Business Critical Important services tolerant of some short downtime

Operations Critical Useful machines where downtime would be an inconvenience

Differentiators

• Data sensitivity and criticality

• Consequences of downtime

• Difficulty of repair and restoration

• System exposure - accessibility and vulnerability to attack

• System’s interconnects - what access can this machine provide to other services if com-

promised

Table 3.3: Factors influencing priority rating

Vulnerability and Patch Research An understanding of the effects of a patch and the prob-

lem the patch is trying to address is required. In the case of security patches this requires an

understanding of the vulnerability in the software being run and how the patch remediates this.

If the trends described in sections 2.3 and 2.4 are taken intoaccount, then it is clear that an

administrator needs to know of relevant security patches and vulnerabilities as soon as they are

released to minimise the effects of the shrinking time to exploit cycle. In addition given the large

number of vulnerabilities and patches, some intelligent filtering is required to limit the list to

relevant patches only, with patches for software not present in the organisation weeded out. This

can be achieved with software which provides filtering basedon criteria such as the vulnerability

criticality and affected products. However, manual filtering is still preferable, although this is

not a dichotomy, and can be more easily managed via escalation procedures. The vulnerability

and patch notification should include what versions of the software are affected, a criticality

rating of the vulnerability seriousness and what steps can be taken as workarounds or stop-

gap measures. There are two factors which contribute to the criticality. The first is how easy

it is to perform an exploit, if it requires obscure user interaction it would be less critical that a

CHAPTER 3. POLICY SOLUTIONS 43

vulnerability which can be exploited remotely without valid credentials. The second is the impact

of the vulnerability, if the vulnerability results in a simple DoS that can be easily circumvented

then it would be less critical that one that provides arbitrary code execution in kernel space. In

addition, the effectiveness, stability and maturity of a patch should be determined. In particular

any conflicts with other software or configurations should benoted, with conflicts specific to

the organisation made clear. Other indications such as the number of times previous versions of

the patch have been recalled and for what reasons, any testing notes provided by the vendor or

other users and any other special considerations the patch may require. This is important when

determining whether or not to deploy a patch under therisk assessmentstep.

Notification can be minimally achieved by subscribing to thesecurity notification and announce-

ment services of operating system and application vendors.In addition public disclosure lists

such as BugTraq2 or Full Disclosure3 can provide more comprehensive notification but at a

poorer signal to noise ratio. Vulnerability databases, on the other hand, can help provide tar-

geted vulnerability announcements and comprehensive vulnerability coverage including links to

exploits, further discussion and threat analysis. Mailinglists and discussion groups are also a

useful resource, particularly for monitoring the effectiveness of a patch or better understanding

the implications of a vulnerability. NIST provides a comprehensive discussion and listing of

notification services [46]. A summary of the research goals related to patches and vulnerabilities

can be found in table 3.4.
2http://www.securityfocus.com/archive/1
3http://lists.grok.org.uk/mailman/listinfo/full-disclosure

CHAPTER 3. POLICY SOLUTIONS 44

Vulnerability

1. Affected Software and Version

2. Vulnerability criticality/seriousness

(a) Ease of Exploitation

(b) Impact if Successfully Exploited

3. Workarounds and Stop-Gap measures

Patch

1. Software or Configuration Conflicts.

2. Number of, and Reason for, Patch Reissue

3. Vendor and End-User testing Notes

4. Special Considerations

Table 3.4: Patch and Vulnerability Detail Summary

Threat and Exploit Research While asset, patch and vulnerability notification helps provide

an overview of the organisation, exploit and threat notification can help provide an overview

of the security landscape. To use a crude analogy, if asset, vulnerability and patch notification

provide an understanding of the vehicle, then threat and exploit notification provide an under-

standing of the terrain. The threats from patches themselves, including non-security patches,

come from possible faults with the patch which should be determined while performing the

patch maturity and stability analysis described above.

Threat and exploit notification should provide knowledge ofwhat tools (exploits) are available

to aid an attacker in exploiting the vulnerabilities and which threats are currently know or likely

to attempt an exploit. While knowledge of vulnerabilities,patches and workarounds is manda-

tory for any patch management policy, knowledge of exploitsand threats is not. However, this

information allows for better risk management decisions tobe made, and in high risk situations

can be critical.

CHAPTER 3. POLICY SOLUTIONS 45

Unlike vulnerability and patch notification, threat and exploit notification is more difficult, with

few resources on the matter. Attackers are controlled by human whim and attack methods de-

velop fairly rapidly and usually in secret. For example, NIST’s document was the only one to

discuss threat notification, but does so briefly without providing any direct threat notification

resources [46, pg 2-8]. Even if a comprehensive threat notification service existed, it would be

inherently crippled due to the difficulty in predicting threat actions, particularly human based

threats. This is not to say threat and exploit notification isnon-existent, quite the contrary. There

are several public exploit clearing houses, honeypot projects examining attacks to discover at-

tacker’s methods, internet telescopes analysing malicious traffic looking for attacks and commer-

cial vendors, particularly anti-virus vendors receiving feedback from their software installed on

customer’s machines. However, the security community’s knowledge of the exploits and attack

methods traded in underground communities is still limited, and it should be assumed that an

exploit exists for every vulnerability. This is especiallytrue if a patch has been released; reverse

engineering of patches can allow for rapid exploit creation[67]. Public exploit clearing houses

such as FrSIRT4, milw0rm5 and PacketStorm6 should also be monitored, and are particularly use-

ful for exploits released after the announcement of the vulnerability or patch. Exploits released

with a vulnerability advisory are usually referenced in theoriginal advisory or by vulnerability

databases. Information about how effective and easy to use the exploit is should also be noted,

as sometimes crippled exploits are released, however thesecan be rapidly improved.

The public release of a scripted exploit has been shown to lead to an upsurge in attack activity[44]

(see figure 2.2). Knowing when this happens can change the parameters of the risk management

equation and indicate that patch deployment should be sped up. Monitoring services such as

DSHIELD’s Top 10 Targeted PortsandPort Reportscan provide insight into the size of potential

threats, and also provide an early warning system of currentor impending attacks. For example

a recent spike in activity on port 1025 led the Internet StormCentre to issue a warning [97],

it was later discovered that the increase was due to the release of the Dasher worm [98] ex-

ploiting the Microsoft Distributed Transaction Coordinator service described in MS05-051 [99].

While the reason for the increased attacks was only evident later, administrators could have still

taken steps to mitigate the potential of an attack, or speed up patching of the MS05-051 related

patches. This process should be integrated with the organisation’s own monitoring from a variety

of relevant local sources such as firewalls, web-servers, anti-virus and intrusion detection system

4http://frsirt.org/FINDOUT
5http://milw0rm.com/
6http://packetstormsecurity.org/

CHAPTER 3. POLICY SOLUTIONS 46

logs, particularly if signatures exist with which organisations can detect known attacks. These

signatures can be anti-virus signatures with statistics gathered at the mail server or the intrusion

detection system’s logs, whichever are the most relevant sources. Work by research groups such

as the Internet Storm Centre (ISC), CERT and malware research laboratories (F-Secure, LURHQ

etc.) should also be monitored to discover the source of potential threats. While these generally

only provide an overview of threats exploiting on a mass scale, it is still useful to know whether

most attacks are coming from an automated worm, diverse group of script kiddies or coordinated

criminal organisations. This should be augmented by an organisation’s own threat source anal-

ysis which, for large organisations, often includes competitors. With these tools and resources,

information such as available attack and exploit tools, thefrequency and scale of observed at-

tacks and the entities most likely to attempt an attack should be researched. Complacency due

to a lack of obvious mass attack activity is dangerous, as a quiet network does not preclude the

possibility of an intrusion. The risk from threats to high-profile and high-exposure targets such

as a large company’s web server should be considered higher.Unfortunately none of the four

policies provide any discussion on threat management beyond discovering available exploits. A

summary of the research goals related to threats and exploits is provided in table 3.5.

The information gathered at this stage should be compiled into useful forms (such as an in-

ternal advisory document) and distributed to relevant stakeholders. This distribution can vary

and should be determined by each organisation. A detailed version should be compiled for use

within the patch and vulnerability group, as this will be used throughout the rest of the process.

In addition, some action can be taken at this early pre-patchstage to reduce the risks of a threat

exploiting the vulnerability. Intrusion detection and anti-virus signatures can be updated to de-

tect and prevent possible attacks and exploits, this is discussed further under defence in depth in

section 5.3.

CHAPTER 3. POLICY SOLUTIONS 47

Exploit

1. Availability (is it publicly available)

2. Effectiveness

3. Ease of Use

Threats

1. Observed Attacks Frequency and Scale

2. Entities Most Likely to Attempt an Attack

3. Profile of Vulnerable Machines

Table 3.5: Exploit and Threat Detail Summary

Automated tools can help when monitoring resources for information about vulnerabilities, patches,

threats and exploits, particularly XML feed aggregators. Many of the resources discussed pro-

vide their topical information in an XML feed for easy syndication. A feed aggregator can

monitor these feeds and provide alerts when there is new content. These feeds can even be used

to syndicate the content from a mailing list. Many of the resources discussed above such as

vulnerability databases and exploit clearing houses provide feeds updated with their latest con-

tent. While other resources such as the ISC and AV vendors provide a regularly updated web log

(blog) detailing and discussing new threats.

3.2.3.2 Risk Assessment

This step’s primary concern is on deciding what the risks presented by not patching are and to

allow these to be compared to the risk of applying a patch. Risk Management is a large field that

alone could fill several theses. This section does not aim to provide a complete description of how

to implement a risk management process. Rather, the focus ison the specific aspects of managing

the risks of patching. Minimally, this step should allow a patching policy to answer the question:

“To patch or not to patch?” However, given that in the face of asecurity threat the decision will

usually be to patch, a mature risk management policy should also allow better judgements about

CHAPTER 3. POLICY SOLUTIONS 48

whenand towhich systems a patch should be applied. Retrospective judgements should also

allow for improved risk mitigation in the long term.

There is a serious lack of discussion on patching risk management within the reference docu-

ments, while each document does discuss the decision of whether to patch or not, it is sometimes

inaccurate and often incomplete. For example Chan [91] never mentioned the possibility of

choosing in favour of not installing a patch and the factors that would lead to such a decision.

Voldal [94] touches briefly on risk management, but does not include it as a step in the patch

management policy. NIST [46] spends more time discussing the problem and provides three

relevant factors (the description is paraphrased):

1. Threat Level - public and high profile servers are more likely to be attacked.

2. Risk of Compromise - the likelihood of a compromise occurring.

3. Consequence of Compromise - the end result of a successfulintrusion.

This is a strange list; they do not indicate that thethreat levelshould be one of the primary inputs

into risk of compromise, whereas theconsequence of compromisewould not, they are either being

inconsistent or were not aware of specifics. In addition, NIST seems to be breaking from their

earlier definition of the wordthreat(see 1.2.1). Sun’s document provides the best discussion out

of the four, but still only deals with a limited subset of issues, namelycostandavailabilitywhich,

while necessary, are not a sufficient enumeration of possible consequences. The decrease in the

time available to patch, the increase in patches and the problems some patches have caused have

only recently highlighted the need for solid alternatives to applying a patch. This, coupled with

the high risks of not applying security patches may have leadto the insufficient dealing with risk

management in the referenced policy documents. However, aspatching and patch management

matures, vendors have increasingly been providing alternative workarounds. In addition, third

party technologies such as anti-virus, firewall and intrusion detection systems have helped to

provide additional protections which can stave off patch installation until the patch is considered

stable and tested. In searching for further work into the to-patch-or-not trade off, the patching

related risk management work by MacLeod [93] was found a useful reference and is discussed

further.

This discussion will revolve around three important factors which make up risk; threat, vulner-

ability and, impact. The three factors making up risk are relatively independent of each other.

CHAPTER 3. POLICY SOLUTIONS 49

This means it is possible for one of the threat, vulnerability or impact levels to change without

influencing the other two factors directly7. This is in contrast to both the NIST and Sun policy.

The terms threat and vulnerability are used in a wider scope here than the rest of the document.

Their use above is specific to a security vulnerability and their related security threats. In this

context the risk of both applying and not applying a patch is determined, thus the threats and

vulnerability of applying and not applying a patch must be determined.

Risk Risk is defined by the equation:risk = threat × vulnerability × impact [93, 100] . in

more detail, risk is the probability of a threat successfully exploiting a vulnerability and bringing

about the ensuing consequences [33]. Thus, as McLeod [93] states “you need to experience a

level of threat to a vulnerability and a significant impact (Cost) for the vulnerability to present

a significant risk.” For example a high profile target (e.g Citibank) would always have high risk

levels because of both the increased probability that it will be attacked, and the increased proba-

bility that a successful attack will have a large impact. However, if it can reduce its vulnerability

surface it can reduce its risk. This definition appears targeted at discussing the risks of not apply-

ing a patch. If we discuss the risks of applying a patch, then concepts such as the threat-source

become less obvious. In this case the threat source is the actual patch, the vulnerability would be

the vulnerability to a system failure due to a faulty patch and the impact would be the resulting

cost and downtime. Thus, this definition of risk can cover both situations.

The following three factors discussed below; patch and security threats, patch and security vul-

nerability, and consequences and impact, are inputs into risk the risk equation. Once they have

been determined, the risk of a decision can be determined andcompared.

Patch and Security Threats Threat has already been defined in section 1.2.1. For the sakeof

ease it is paraphrased as: an entity or adversary with the capabilities, intentions, and attack meth-

ods to exploit a vulnerability in an asset. In the context of security patches, this entity is usually

malicious and could be anything from a curious teenager, professional cracker, enemy govern-

ment or automated worm. At this point the threat research from step one should be compared

with information such as the public profile of the vulnerablesystems. For example a vulnerabil-

ity in the FBI’s web servers is likely to attract a higher threat level. This will allow the threat

level faced, while the patch remains undeployed, to be gauged.

7Although there is some influence. For example the impact of intruding into a large financial organisation would
be large, which may contribute to the higher profile, and hence increased threat level of the organisation.

CHAPTER 3. POLICY SOLUTIONS 50

The threats to systems and assets when deploying a patch are different and stem from possible

faults in the patch itself. These can manifest themselves ina variety of ways, from affecting

other systems and software negatively, re-introducing further problems or failing to perform the

function for which the patch was issued. This type of threat level is gauged from the research

performed into the maturity and stability of a patch during step one. For security patches the pos-

sible threats faced by deploying a patch usually pale in significance to the alternative, namely an

intrusion. With proper testing, regular backups and careful monitoring, the threats from patches

can be discovered, planned for and mitigated. An intrusion by an attacker on the other hand, de-

pending on skill and motivation, could be far more difficult to detect, cause far more damage and

be more difficult to repair. For example, if an attacker were to steal sensitive customer account

details the option of a quick restore from backup is not available.

However, whether choosing to patch or not, the threats facedby not patching, will always apply.

As, even if the decision is made to patch, the organisation will still be vulnerable from the time

of public vulnerability disclosure until the patch is deployed internally. This will be discussed

further under the scheduling step (section 3.2.3.3).

Patch and Security Vulnerability The level of vulnerability of an organisation to a particu-

lar threat can be calculated as the seriousness of the vulnerability multiplied by the number of

vulnerable machines multiplied by the exposure of the vulnerable machines. The asset informa-

tion gathered in step one should allow every machine runningthe vulnerable service, software or

system to be determined. The seriousness of the vulnerability should not include the impacts of

successfully exploiting the vulnerability, but rather thelevel of access required for the vulnerabil-

ity to be exploited and the ease of exploitation of the vulnerability. These should be determined

when performing the vulnerability research discussed above. Not all systems are likely to be

exploited, machines whose vulnerable service is publicly available are more vulnerable to attack

than services while are only internally available. However, internally available systems are still

more vulnerable than systems which disallow direct user access, because if a threat penetrates the

organisation’s border, the vulnerability of internal machines must be considered. Thus, a grade

of vulnerability should be applied to each vulnerable machine. The grade would be tempered by

the ease of exploitation. The level of vulnerability of an organisation will then be a summation

of the vulnerability grade of the vulnerable machines.

The vulnerability of not applying a patch is different as it is easier to calculate and easier to

minimise. As the patch is being installed by the organisation, the likelihood that the patch will be

CHAPTER 3. POLICY SOLUTIONS 51

installed to the relevant systems is near 100 percent. Thus,estimations of the machines exposure

are unnecessary and the vulnerability will be based on the number of machines which are to

receive the patch. As mentioned above, there is a window of vulnerability before a patch is

deployed. This measurement can help to determine when the patch should be deployed and is

discussed further under the scheduling step.

Consequences & Impact Consequences are the result of a threat being successfully realised

against a vulnerability. These are the both the direct consequences and indirect consequences.

Direct consequences include; cost of recovery, cleanup andre-deployment, downtime and loss

of availability etc., which are usually only marginally influenced by the specifics of the business.

Indirect consequences include; lost revenue, damaged reputation etc. and are business specific

effects of the direct consequences. Together these consequences make up the impact the reali-

sation of a threat. For example, lost availability on a mission critical server will have a larger

impact than the same consequence on a less important server.

Calculating consequence consists of working out what the effects the realisation of a threat

against the vulnerability would have. The two most obvious consequences are the costs of a par-

ticular action, the lost availability and the interruptionto operations. It is difficult to determine

the consequences of an intrusion, as the extent to which the intruder can compromise vulnerable

machines cannot be predicted. For example, an intruder could compromise a machine and use the

access to snoop on an organisation’s activities, launch other attacks or just disabled the machine.

It is equally difficult to predict the behaviour of a faulty patch, which could disable a server,

re-open an old vulnerability or cause miscalculations in critical billing information. However,

more time is available to prevent and plan for patch failures. In either of these situations (if the

attack/fault is detected) the server will have to be rebuiltresulting in associated downtime and

varying costs to the organisation, both direct and indirect.

To avoid the complications of enumerating all possible consequences. The criticality and priority

of the vulnerable machines determined in step one should be used to gauge the impact. If the

vulnerable machines are of higher criticality then the impact will be higher. This allows the

impact to be usefully abstracted.

The Australian Department of Commerce’sInformation Security Risk Management [6]docu-

ment recommends assigning an impact level to one of the measure’s described in table 3.6[6] .

The impact levels are deliberately vague, as the specifics ofwhat differentiates a catastrophic

from a major risk need to be specified per organisation.

CHAPTER 3. POLICY SOLUTIONS 52

Qualitative Measure Description

Catastrophic Critical services and core business

operations would be threatened.

Major Effective service provision would be threatened

and require top management intervention.

Moderate Core services would function, but an

organisational review or procedure change

may occur.

Minor Some services would suffer, but

not fail. It could be dealt with internally.

Insignificant Routine operations and

maintenance could repair it.

Table 3.6: Impact Level[6]

Assessment Once the threat, vulnerability and impact levels have been determined. A deci-

sion on the risk faced by an action can be taken. The Australian Department of Commerce’s

Information Security Risk Management [6]provides a good methodology, where the threat and

vulnerability level is used to determine the likelihood (see table 3.7[6]) of the threats exploiting

the vulnerability. This is then used along with the impact level to determine the level of risk (see

table 3.8[6]). Finally, this risk assessment does not stop here, but willbe constantly modified

and used in the next steps.

CHAPTER 3. POLICY SOLUTIONS 53

Qualitative Measure Description

Nearly Certain The threat level and vulnerability level are

both high making this almost certain to occur.

Likely The threat and vulnerability level are

high, but it is not certain this will occur.

Moderate It is likely this event will occur,

but it probably won’t happen immediately.

Unlikely It is doubtful this event will occur,

but there is still a possibility.

Rare The threat and vulnerability levels are so low

this would only occur in an exceptional circum-

stance.

Table 3.7: Likelihood[6]

Impact

Likelihood Insignificant Minor Moderate Major Catastrophic

Nearly Certain H H E E E

Likely M H H E E

Moderate L M H E E

Unlikely L L M H E

Rare L L M H H
E = Extreme Risk

H = High Risk

M = Moderate Risk

L = Low Risk

Table 3.8: Risk Level[6]

3.2.3.3 Scheduling and Patching Strategy

Too often in the past patching was done in an ad-hoc ’as the patch arrived’ manner. Vendor

release policies have helped this somewhat (see section 4.3). To ensure that patching is done reg-

ularly in a controlled and predictable manner a patch schedule should be created. This schedule

CHAPTER 3. POLICY SOLUTIONS 54

will primarily be informed by the initial risk assessments performed in the previous step. Chan

[91] recommends the creation of two patch cycles.

• Regular, defined and predictable cycle for non-critical standard patches. Usually with

time-based triggers.

• Expedited, when necessary cycle for critical patches. Usually with event-based triggers.

The first is a regular cycle who’s purpose is to ensure the application of normal non-critical, stan-

dard patches and updates, these are often non-security updates, updates for which an effective

workaround/mitigation exists or an update for a vulnerability the organisations security infras-

tructure already mitigates. The cycle can be either time or event based e.g. monthly or after

the release of several such patches. This can be split to forma separate longer cycle for large

cumulative updates such as service packs or operating system upgrades. Given the large num-

ber of changes such upgrades introduce, it is usually requires more testing and integration, e.g.

training support staff, upgrading related applications, integrating software. Thus, a longer more

carefully planned cycle can be split from the first. The second cycle’s purpose is to ensure the

installation of critical security patches and updates and should be completed whenever a critical

patch is announced.

An initial assessment of the patch is required to determine which of the two cycles a patch

should be placed in. In addition, within each of these cyclesa hierarchy of patch priority should

be developed to determine what order patches and machines are worked on. These decisions

will primarily be informed by the risk level associated witha patch and it’s related vulnerability.

When determining when to patch, there are two conflicting risks as shown above, the first is the

risk of applying a patch and the second is the risk of compromise (or the risk of not applying

a patch). In their seminal work on the subject Beattieet al. [2] describe how the optimal time

to patch can be solved. Over time the risk from compromise will increase, as exploit and attack

tools are published and improved, while becoming more widely know; and the risk from a patch

will decrease as bugs are reported and the vendor re-issues the patch or provides advice. Thus, a

hypothetical graph of the risks will look like figure 3.1 [2],where the optimal time to patch is at

the intersection of the two risk curves. Beattieet al. provide research analysing a cross section of

patches and vulnerabilities and showed that the optimal time to patch was at eithertenor thirty

days after the release of a patch. This was based on comparingthe number of times patches were

re-released due to problems to the number of intrusions. At ten and thirty days the risk drops

CHAPTER 3. POLICY SOLUTIONS 55

Figure 3.1: Hypothetical graph of the risk of compromise andpatching [2].

off. They also provided their methodology, encouraging further research on the optimal patch

application time of specific vendors. Ideally, solving the optimal time to patch for the specific

subset of software vendors used within each organisation would provide an optimised estimate,

and could be shared with the wider community. It is importantto note, that if an organisation has

sufficient resources to thoroughly test a patch before deployment, then the risks a patch presents

to that organisation can be reduced at a sharper rate, and hence speed up patch deployment and

reduce the risks faced from a compromise. The ten and thirty day deployment suggestion is

primarily for smaller organisations with limited resources that cannot afford to deploy a large

patch testing regime. The specific risks, and risk thresholds should be worked out in the previous

risk assessmentstep.

Sun Microsystem’s documentSolaris Patch Management: Recommended Strategy [3]recom-

mends a strategy not mentioned in other documentation, thatof minimising change. The argu-

ment supplied for this supports the risk assessment conducted above and should be taken into

consideration when crafting a patch schedule. The argumentclaims that “overall downtime,

planned and unplanned combined, goes up with more frequent application of patches.[3] ” In

figure 3.2[3] this theory is demonstrated. Up-time increases at a constant rate over time which in

an ideal world with no downtime out look like a straight lightfrom the origin. However, if there

is an outage up-time stops increasing and a plateau is formed. The current patching strategy of

CHAPTER 3. POLICY SOLUTIONS 56

Figure 3.2: Patch application and its impact on Availability [3]

apply every patch thus looks like a regular set of plateaus that results in the lowest total up-time.

The other extreme is to only apply patches after a failure such as an intrusion. A failure would

result in unplanned downtime which would be longer than planned downtime, due to the extra

time required for problem diagnosis, to divert resources and due to being less prepared. Once the

failure resulting in unplanned downtime is corrected, an additional planned downtime is neces-

sary to apply the fixes that could have prevented the intrusion. This is represented by the reactive

line. It is interesting to note that it is possible for reactive patching to result in less downtime

than applying every patch. This graph does not include downtime due to faulty patches, which

would presumably reduce the up-time of the current strategyeven more. However, the reactive

strategy isn’t acceptable, and intrusion can have far more negative results that just downtime.

Therefore, a strategic patching schedule should seek to optimise between these two extremes.

By only applying necessary patches, the planned downtime from patch installation, downtime

from patch failure and downtime from an intrusion can be minimised. Given that downtime also

has a cost element, strategic patching can also help to reduce the costs of patching.

Minimising change recognises that not every patch that is released is applicable to an organisa-

tion. There are two primary considerations to minimise change[3] .

1. Address only know issues for which no acceptable workaround exists.

CHAPTER 3. POLICY SOLUTIONS 57

The patch and vulnerability group should analyse the patch and identify whether the or-

ganisation suffers from the problem it purportedly fixes. Ifit does, then research into

alternative ’cheaper’ methods of remediating the problem should be conducted.

2. Keep current according to business needs.

The version of software used should be the lowest, still maintained, version appropriate to

the specifics of an organisation, unless new software is being deployed. In addition, new

features should only be deployed if necessary to business needs.

For example if there is a vulnerability in a mail client that only affects people using the IMAP

mail protocol, then users of the software who do not use IMAP (and have it disabled) but rather

POP3 can ignore the patch. Alternatively, if an acceptable workaround such as disabling a non-

critical service exists, it can be used instead of the patch.This will ensure that the software is kept

as up to date as your organisation requires, instead of as up to date as the vendor has allowed.

An intelligent choice of which patches should be installed can reduce the number of patches in-

stalled. However, it is important to ensure patches are distributed to all vulnerable machines [46,

pg 2-11], minimising change by limiting distribution to high risk groups only is an ineffective

measure due to the nature of an intrusion, where often low criticality and low risk machines are

compromised first providing an attacker with internal access to the organisation [93] from which

further attacks attempting to achieve a higher level of compromise can be performed.

From this information a patch schedule should be created. The triggers and timing of this sched-

ule should be specific to the organisation. The optimal time to patch for the software used withing

the organisation should be determined and used to determinethe lengths of or triggers for the

schedules. In addition a strategy for deciding into which schedule a patch should be placed

should be determined. This will take as its primary input therisk assessment from the previous

step. This should be used to first decide into which cycle a patch should be placed, and second

to determine when a trigger has been reached.

3.2.3.4 Testing

Testing is a critical part of any patch management process. The primary goal of testing is to

reduce the threat of faulty patches discussed in therisk managementsection. Given the amount

of regression testing that can be required, this goal can be the primary delay in patch deployment

CHAPTER 3. POLICY SOLUTIONS 58

and stands in competition with the need for rapid patch deployment in the face of a shrinking

exploit and patch window (discussed in section 2.3). Worse still, the hasty application of a faulty

patch can cause a wide range of damage, for example it could; fail to remediate the vulnera-

bility, undo fixes from past patches, introduce new vulnerabilities, impair the functioning of the

software being patched or impair the functioning of other software. This could be either mali-

cious or accidental. Testing is especially important if an automated patch deployment solution

will be used. A common worry about automatic patching is thatfaulty patches will be deployed

automatically [39]. This is usually due to inadequate patchtesting, both from the vendor and

the organisation. The deployment of a patch to production machines should not be considered

testing, whether manual or automatic. To minimise these risks of patching it is critical that an

organisation thoroughly test a patch before it is deployed.Testing is primarily a technical step to

determine whether the patch and resulting updated softwarewill actually correct the vulnerabil-

ity, and that the affected components continue to function correctly. Particularly in the context

of your organisation’s specific configuration. However, additional information such as the likely

disruption to business during patch deployment and any changes to business processes can be

observed and document.

The steps performed when testing should be determined within the organisation and documented

for each relevant system and piece of software. These checkscan vary from a simple check that

the patch installed and the system rebooted correctly, to a series of automated scripts checking

the critical functionality of the officially supported software. Standardised configurations set to a

common base line should be created. This helps to reduce the number of different configurations

that need to be managed, as it does in the production environment. A document for each base-

line should be created with the expected behaviour of the system described and verifiable tests

provided to check this [101].

Ideally, the testing should be done in an environment that exactly mirrors the production envi-

ronment, however this is very often not possible. At a minimum the test environment should

represent all mission critical servers [91]. It is not always possible to re-create the exact pro-

duction environment, particularly in organisations with limited budgets. Standardised base-lines

allow the configuration of machines to be more easily defined and re-created. With standardised

base-lines a testing environment would only need one example of each configuration. Virtual

machine technology can be used to reduce costs and re-createparticular environments. Several

virtual machines can be run on one actual machine, creating a’lab-in-a-box’ which can dra-

matically reduce the hardware costs of setting up a test lab,and improve ease of maintenance

CHAPTER 3. POLICY SOLUTIONS 59

[94]. The downside is that specific physical hardware interactions can be difficult to model with

a virtual machine, particularly for hardware-specific software such as drivers. Three excellent

products which can be used are VMWare [102], Xen [103] and Microsoft Virtual PC [104] and

Virtual Server [105]. After testing patches in the lab, theycan be deployed in a waterfall style

roll-out, where patches are deployed to the lowest criticality, easily recoverable machines first,

then continue up the criticality hierarchy. This can help todiscover any bugs missed in the lab

while helping to minimise risk, but may still result in some unwanted downtime and should not

be used as the primary testing method.

While the tests will mostly be organisation specific, some tests are common to all patches. Some

patches rely on other patches or supersede previous patches. Ensure that all required patches and

their dependencies are tested and deployed in the correct order. For example. Oracle’sAD Merge

Patch[106] can merge several patches into one install path and canhelp to reduce the complexity

of installing multiple patches , Sun and other vendors accumulate their patches into one package

before hand [3] while Debian [70] and Microsoft [107] build dependency checking into their

deployment tools. In addition, vendors often release cumulative or roll-up patches. Most vendors

provide a method for checking the authenticity of a patch. The most basic versions involve

checking a hash8 of the file with a fingerprint available at the vendors website. More advanced

authentication mechanisms involve an automated check for an authoritative digital signature.

This authenticity should be re-checked as the patch is movedaround the organisation, to prevent

tampering [91]. Some organisations may choose to put their own signature on the patch. After

verifying the authenticity, the patch should be scanned forany malware by an up-to-date anti-

virus software package. If possible, the patched software should also be scanned in case the patch

contained malware that only became obvious once deployed, one such example can be found in

Ken Thompson’sReflections on Trusting Trust[108]. None of these methods are guaranteed

to protect against all malicious patches, for example if thecreator of the patch had an, as yet

unseen trojan, stowed away in their final patch release, it would appear signed and most anti-

virus packages wouldn’t detect the trojan [46]. After deploying the patch to the test environment,

ensure that the vulnerability has been correctly patched and that no new vulnerabilities have

been re-opened. This is mostly easily, but not completely, checked by a vulnerability scan.

Repeatable tests that can be used to ensure that a patch has been correctly installed should be

devised and documented. Most often the verification of a successful deployment is provided for

by automated patching software. However, the range of applications and functions which require

8Given the recent cryptanalysis attacks against MD5 and SHA-1, verifying with one of these hashes is not
sufficient. Other hashing algorithms such as SHA-256 shouldbe employed.

CHAPTER 3. POLICY SOLUTIONS 60

patches through their life-cycle will ensure this is not always straightforward. Some vendors

provide information on how to verify the patch was installedby providing repeatable checks

that can be performed. These checks can include; looking at file versions and hashes, checking

configuration settings, observing different behaviour etc. and will have to be determined for each

patch. Some patches also provide a method to undo the changesin the event a patch needs to be

rolled-back [46]. Debian, Red Hat, Solaris and Microsoft all provide some patches which can

be easily removed, but not all patches have this functionality, and without exact copies of the

previous files they often revert to a default state which is not always desirable. These should be

tested and appropriate backups taken to restore the system if a patch needs to be removed and

the undo functionality does not work or is not present.

Given the need for an expedited testing process, several methods can be employed. On a procedu-

ral level, noting the interactions already tested by the vendor can save time while subscribing to

the vendors patch notification service can provide early warnings and reduce redundant checks.

Community lists should also be monitored. For example the patch management mailing list9

often has discussions on faulty patches and their solutions. If possible, automated tests for the

core business process should be implemented, for example comparing the accounting informa-

tion produced from the same input sent to two versions of the software, one patched the other

unpatched, can catch subtle data corruption bugs and can be trivially implemented. Performing

as much of the testing overhead as possible before the announcement of a patch will help to

reduce the time taken when the patch is released. For example, having a regular automated back-

up system in place can reduce the time required to make back-ups before a patch is deployed,

allowing removing the patch to be tested more rapidly. Lastly, checking the dependencies of the

patched software can allow for certain tests to be prioritised over others. For example, if a patch

updates a dynamic library then all programs depending on that library should be tested. As a

further time saver scoping the testing to the changed functions can result in fewer tests without

significant danger. For example, if only one cryptographic algorithm is patched in a dynamic

library, then testing all of the algorithms is somewhat lessuseful. These tests can also help in de-

termining what services should be checked for new or old vulnerabilities that were inadvertently

created by the patch. However, scoping the tests too much canresult in an incomplete study and

missed bugs.

Due to the difficulty in working out program dependencies andpreventing too narrow a scope.

Some tools have been developed in an attempt to partly automate this. The assumption is that if

9http://patchmanagement.org/

CHAPTER 3. POLICY SOLUTIONS 61

the patch can be analysed for all possible dependencies, then the scope can be narrowed to only

testing dependent programs with no danger. In addition, faults can be better troubleshooted by

reverse walking the dependency tree. Two such tools attemptto do just this, Microsoft’sStrider

product [109] or Solaris’sowhat[110].

If there are several possible methods of remediating a vulnerability, then the assessments must

be carried out on each one. The risk management step providesthe tools which can ease making

a decision between the competing threat from patches and from attackers. Thus, any additional

information as to the threats a patch pose to the organisation must be used an an additional input

into the ongoing risk assessment. At this point an assessment as to whether the risks are such

that the patch should or should not be deployed must be made. If the decision is to not deploy

the patch then alternative layers of defence must be tweaked, this is discussed further in section

5.3.

3.2.3.5 Planning & Change Management

Much of the purpose of a patch management policy is to manage the change introduced by a

patch. As such integration with existing change managementstructures are critical to its success

[91]. As with risk management, change management is a large field that will not be discussed

in detail here. The primary goal of change management will beto provide documented proce-

dures for various aspects of the patch application to keep changes consistent and avoid surprises.

Having a clear change management policy will help when troubleshooting problems as specific

changes which caused the problem can be pinpointed, relevant personnel summoned and future

problems avoided. During this step a plan for how the patch will be deployed and the changes

logged will be developed. It should seek to minimise the risks of patching by fully utilising

the advanced warning afforded by knowing when a patch will bedeployed. The benefit of ad-

vanced warning is that contingency and back-out plans can bedeveloped. The end result should

be a documented process specifying explicit steps when planning for and applying change and

ensuring accountability for applying changes.

Such a policy requires four important functions [91]:

1. Proposed Change

2. Contingency and back-out plans

CHAPTER 3. POLICY SOLUTIONS 62

3. Risk mitigation

4. Patch monitoring and acceptance

The proposed changes, namely the patch or workaround that will be deployed, should be doc-

umented. The details of what change is introduced would havebeen discovered during testing.

These changes should then be approved and signed off by the people responsible for the systems

which will be modified. This will help to provide a clear authenticated audit trail of changes in-

troduced. To prevent inconsistent deployment, access controls should be used to disallow users

or other programs from installing their own patches, unlessit is preferable to do so. To en-

force this consistency policy, guidelines as to what level of drift from the baseline is acceptable,

and how users should behave and respond to patch deployment notifications should be drawn

up, coupled with regular checks to ensure the guidelines areeffective. These changes must be

distributed to relevant stakeholders, this can be achievedwith an organisational patch and re-

mediation database. The advantage of this is that it provides a central resource than can be

referenced in the future when information on the patching process is required at a later stage,

such as when creating new baselines or calculating metrics.Change management allows depen-

dencies to be created between groups and systems, allowing achange in one group to trigger an

alert to another group that might find the change relevant. This is important when maintaining

operational baselines, as build images and documentation must be updated to include the de-

ployed patch. To quote Chan [91] “These modifications are most ideally and suitable handled

via an enterprise-wide change management system.”

Contingency and back-out plans should be prepared for a worst case scenario. Documentation

describing what is being installed, its intended outcome and how to remove it should be drawn

up. The procedures to restore system state from back-ups created during the testing step should

be documented and made repeatable. Ideally these should be worked into a regular schedule that

doesn’t wait for a patch release, to save time during deployment. The inventory of system assets

drawn up in step one can be used to inform the direct end-usersand notify or request help from

the people marked as responsible for the relevant assets. This will allow personnel to be notified

and on standby in the event of a failure; with support staff notified of the upgrade and briefed on

the relevant information with which to respond.

Risk mitigation requires performing the roll-out in a way that will limit possible complications in

an attempt to reduce the likelihood of a threat being realised. To achieve this, both the technical

CHAPTER 3. POLICY SOLUTIONS 63

and procedural aspects of deploying the patch should be analysed for possible failure. Any fail-

ure points should then either be removed, mitigated or minimised. On a technical level this may

require that the infrastructure can handle the patch deployment. For example, ensuring that the

file server distributing the patch has enough bandwidth, andif not, staggering the times at which

machines update or providing more bandwidth are possible solutions that should be implemented

before a deployment. At a procedural level this requires ensuring that the necessary non-technical

components for both the changes and contingency plan are available. For example, ensuring rele-

vant personnel are available or staggering updates to ensure that personnel are not swamped with

troubleshooting. This is often a difficult task to perform asit is not always easy to see the pit-

falls. Previous experiences with faulty patch installations should always be documented, and can

provide a useful source when looking for possible points of failure. A common components of

risk mitigation will include details of patching machines that the automated deployment methods

failed or are unable to patch, such as machines that were powered off, mobile device that were

outside the organisation network and unsupported softwareand hardware devices (e.g. router

firmware). These must be planned for. Common solutions include:

• Using pull-based patching, where the device pulls its own patches as soon as it can

• Quarantining unpatched devices in a limited access networksub-net

• Enlisting the help of users

• Plain manual patching

A deployment schedule detailing which systems and groups ofsystems will be patched and in

what order, taking into account the business needs and risksassociated with each group should

be drawn up.

Plans relating to the monitoring and acceptance of patches detail what criteria must be met for the

patch to be considered successful and how these criteria will be monitored. This will provide a

specific and measurable milestone for the completion of the upgrade [91]. It is naive to think that

all patches will install smoothly and working in emergency mode until all patches are installed

can be a waste of resources and divert attention from more important vulnerabilities and threats.

This should provide specific and measurable criteria based on the level of risk the organisation

is facing and find acceptable. In addition, these points can be used when developing patching

metrics discussed below.

CHAPTER 3. POLICY SOLUTIONS 64

3.2.3.6 Deployment, Installation and Remediation

Many system administrators have the most experience with this stage of the process [91]. Often

when referring to patch management or patching, many are actually referring to the physical

act of installation or deployment of patches. Due to the focus on deployment this is one of the

better understood steps, and the area into which the most work has been performed, particularly

into automated patch deployment tools. It is important to view this step as part of a larger patch

management process, and is the snag many patch management products fail to realise.

This step is primarily concerned with creating a method for effectively deploying patches with

minimal manual intervention. Unattended automated deployment is not always desirable how-

ever, and it may be more appropriate to patch mission critical systems manually, during off-peak

hours [94]. Automated solutions do help aspects such as reducing costs of large-scale deploy-

ments and automating repetitive stages of the patch management process providing both a benefit

to speed and reduced chance of human error [3]. More on current patch management solutions

can be found in section 5.2 with further discussion of the technical aspects of an automated so-

lutions discussed in section 5.2.1.6. However, not every piece of software and device will be

supported by the automatic deployment methods used. The plans drafted in the previouschange

managementstep (see section 3.2.3.5) should be followed and should handle predictable prob-

lems. This control will help to prevent drift from the consistency correct change management

procedures seek to create. The patches should be deployed ina controlled and predictable manner

that limits disruption to the business’ processes.

Several technologies can be used to improve the speed and accuracy of patch deployment. Com-

pression can help to speed the transfer of the patches to end-user machines. Distributing patches

as binary differentials can dramatically reduce patch size[111]. Encryption can help to reduce

the chance of tampering and hide the often sensitive information, such as details of operating

system, hardware, installed applications and patch levels, being sent between client and server

machines. Digital signatures, particularly if they have already been implemented within an or-

ganisation wide public key infrastructure, are a mostly mandatory method of preventing tamper-

ing with patches and ensuring only approved patches are installed. Unfortunately many of these

features need to be implemented by vendors and patch deployments tools, which are not always

developed in-house, these technical features are discussed further in section 5.2.1.6.

It is important to remember that patch deployment tools usually install software at a higher priv-

ilege level to many machines in the organisation, the severity of a compromise of the patch

CHAPTER 3. POLICY SOLUTIONS 65

deployment tool, allowing it to be used as a malware infection vector, would be high. Unfortu-

nately, this security implication of correcting security vulnerabilities is sometimes ignored. For

example, when Microsoft released the MS05-038 patch [112] with corrupted digital signatures,

neither Microsoft nor end-users mentioned the possibilitythat this was the same symptom a

compromised patch would demonstrate [113]. Thus, the security of the patches and patch dis-

tribution mechanism should not just be a function of testing, but rather a constant pressure, with

every stage of the patch’s life-cycle, from first obtaining it from the vendor right, through it’s

deployment and finally its successful deployment must be authorised and authenticated [91].

In a larger organisation, multiple patch deployment methods may be used and determined by

relevant business units. In this case, it is appropriate forthe patch and vulnerability group to

provide the relevant information to the various parties. Once again, the organisational patch and

remediation database mentioned earlier can provide this. This can also be useful in allowing

end-users to apply their own patches for organisations which give the user more control over

their desktop machines, such as universities or other research institutions.

3.2.3.7 Verification & Reporting

Not every patch deployment will be successful. Some machines will be unavailable during the

roll-out while others will fail mysteriously. The goal of this step is to verify the successful

installation of the patch, and discover which patches failed to deploy to which machines and

why.

The deployment plans drawn up will have detailed which machines and groups of machines the

patch should have been deployed to. In addition, during testing, specific repeatable tests which

can be used to verify the successful installation of the patch should have been provided. The

documentation and resources provided by the asset and host inventory created during information

gathering, the patch verification steps drawn up in testing and the deployment plans created in

the change management step should provide an easier to verify that the machines and services

to which patches were deployed had the patches successfullyinstalled. It is interesting to note

that Chan [91] argues that this step should contain the assetand host management inventorying,

performed in this policy during information gathering. Given that system discovery is critical for

more security aspects it is believed to be more appropriately placed where it is currently.

Verification that the patch has been installed and that the vulnerability has, in fact, been reme-

diated needs to be conducted. It should have been ascertained during testing whether the patch

CHAPTER 3. POLICY SOLUTIONS 66

does remediate the vulnerability, thus verifying this can be minimised at this point. However,

if the vulnerability has been remediated then it can be assumed that the patch was successfully

installed (but not vice-versa), thus if the choice is between verifying the patch install or veri-

fying that the vulnerability was remediated, the latter should be opted for. Verification can be

either direct or indirect. Direct methods would include actions that require local machine ac-

cess10, for example checking patch logs and file hashes or configuration options (e.g. registry

settings), indirect methods are performed remotely and would include methods such as observ-

ing port connection strings or remote vulnerability scanning. Some vulnerability testing should

occur by performing a vulnerability scan on a representative sample of patched machines. More

on vulnerability scanners can be found in section 5.2. Vulnerability scans sometimes include

actual exploit techniques and may cause harm to the system, the specifics of the scan should be

noted to prevent a harmful scan [46, pg 2-14] from wreaking the kind of damage the patch was

supposed to prevent. In the time since the initial creation of the host inventory, new machines

may have become active on the network or mobile devices may have returned. It is important to

include them in the patch deployment. A good automated assetinventory system should update

the inventory as the new machines become active, but this does not necessarily mean they have

had the patches deployed.

At this point some problems due to a fault in the patch should become evident. These need to

be identified and remediated as soon as possible. The risk mitigation steps put together during

the change management process could help to minimise the impact, by ensuring that problems

are planned for and the relevant staff are ready to respond with the contingency plans. Staff

should be aware that a change has been implemented and cautioned to be on the lookout for

subtle inconsistencies, such as minor miscalculations, asa small fault in the patch that goes

unnoticed could potentially be very harmful. At this point adecision should be made as to

whether the changes should be rolled-back. This decision should be made if the patch is causing

more problems than the related exploit, or if there is more chance of a bigger problem (higher

risk) manifesting itself than an intrusion presents. If theprevious steps have been conducted

thoroughly, it is rare that this decision should be made. If it is, as in chess, ensure that every

system which has the patch defence removed is covered by an alternate defence.

This phase should also generate reports, record relevant statistics and document any problems

that occurred to prevent repeat mistakes. These reports should be summarised and regularly for-

10Local access is not the same as physical access, but it has similar requirements, usually valid user credentials.
However, local methods can often be performed remotely. Physical access can provide direct manipulation of the
machine allowing root or administrator access.

CHAPTER 3. POLICY SOLUTIONS 67

warded to upper-management to ensure they know the patch management process is functioning

correctly [94]. These reports can also be used to tweak othersteps, particularly the risk assess-

ment step for future patches. To properly report on how well the implemented patch management

process is meeting its targets, the targets need to be definedusing metrics. To quote MacLeod

[93]:

Without having available metrics to measure specific aspects of your patch man-

agement programme, it is difficult to establish or set appropriate patching targets

and objectives. [Which] makes it impossible to measure deviation from targets and

[define] acceptable tolerance limits. Metrics help to demonstrate that your patch-

ing efforts are effective and offer the security managementteam solid information

that allow them to communicate security posture to the business stakeholders in a

meaningful way.

The metrics measured here are not limited to the most recently deployed patch, they should also

be used to provide a summary for relevant groupings of patches and machines. These grouping

can be time based or be made up of a relevant basket of patches,some example groupings are;

all patches across all machines, all critical patches deployed to mission critical server, all patches

deployed in the last year to desktop machines, all critical patches pending during the last three

successful intrusions. By measuring the relevant statistics, it is possible to generate new reports

rapidly. Very little extra work is necessary as the requiredinformation is gathered in this and

other steps of the policy. Automated tools will help to gather these data and easily scope them to

the group desired.

A particularly useful metric is that ofpatch coverage, which is the percentage of machines that

have a patch or group of patches installed. The data requiredfor its calculation are:

• Nm - Number of machines in grouping

• Np - Number of patches being analysed

• Npi - Number of the specified patches installed

• Npu - Number of the specified patches not installed (unpatched machines)

CHAPTER 3. POLICY SOLUTIONS 68

The equation then required to calculate patch coverage of anorganisation (PC) is a simple

percentage [93] listed in equation 3.1:

PC = (Npi ÷ (Nm × Np)) × 100 (3.1)

For accuracy purposes, the number of patches analysed multiplied by the number of machines

in the grouping should be the same as the addition of the number of patched machines and

unpatched machines:

Np × Nm = Npi + Npu

This is important to ensure that the measured result (Npi + Npu) result is consistent with the

predetermined result (Np×Nm) and hence the patch coverage result is accurate for the grouping.

For example if the metric is calculating the patch coverage of mobile devices, and only half the

mobile devices are included, the metric cannot be said to be accurate. This is less important

for groups of machines that are stable on the network. The opposite of patch coverage is the

organisation’s vulnerability coverage (V C) which provides an indication of how vulnerable an

organisation is:

V C = 100 − PC

For example, if the patch coverage for all critical patches on mission critical servers were to be

calculated,Nm would be the number of critical servers in the group (e.g. 100), Np would be the

number of critical patches deployed so far (e.g 10),Npi would be the number of machines found

to have the patch successfully installed during verification (e.g. 800) andNpu would be the

number of unpatched machines discovered during verification (e.g. 200). Therefore, the result

is:

= (800
(10×1000)

) × 100

= (800
1000

) × 100

= 0.8 × 100

CHAPTER 3. POLICY SOLUTIONS 69

= 80% patch coverage

Scoping these metrics by time can also be useful. Providing common time intervals, such as

5 or 10 day intervals, will allow the patch coverage at the same interval across patches to be

compared. Calculating patch coverage when events in the vulnerability life-cycle occur can be

used as input to risk management decisions or to prove the effectiveness of the patch schedule,

e.g. when the first exploit was released the total patch coverage was at 75%.

1. Time at which exploit code was publicly available for the vulnerability

2. Time at which an automated attack was released (worm)

3. Set patch coverage targets at a fixed time interval after the release of the patch.

A picture of the patch coverage at each point can be measured.Earlier it was shown that the

release of exploit code is the primary trigger for an increase in attacks so, knowing the patch

coverage at that point and when a rapidly spreading worm is released is a useful metric. The

time at which the vulnerability was announced and the patch was released should be included

to provide a more accurate picture of the metric. For example, if the patch is released after

the exploit, then a patch coverage of 0% is better explained as being caused by a patch not being

available rather than ineffective patch deployment. Including the risk assessment in a summarised

form along with the metric will further help to explain the patch coverage, as a coverage of 0%

without any additional defences or steps taken is very different from a well defended vulnerability

with no patches deployed. A larger example demonstrating how these metrics can be employed

during a patch deployment is provided in table 3.2.3.7.

In-depth Patch Coverage Example A more detailed example will demonstrate the various

metrics that can be determined with patch coverage.

• If we imagine an organisation where all known vulnerabilities have been patched then

the initial patch coverage will be 100%.

CHAPTER 3. POLICY SOLUTIONS 70

• Later, a vulnerability is publicly disclosed and a patch is released at the same time.

The patch coverage for that specific patch across the organisation will start at 0%. The

vulnerability coverage is at 100%.

• A couple of days later an exploit for the vulnerability is publicly disclosed. At this

point a calculation of the patch coverage for each priority group is made:

Nm would be the number of machines in each group,Np would be 1 as we are only

calculating for one patch and can be ignored,Npi would be the number of machines

found to have the patch successfully installed during verification andNpu would be

the number of unpatched machines discovered during verification. Therefore, using

the patch coverage equation 3.1:

Mission Critical Business Critical

Nm = 230

Npi = 191

PC = (Npi ÷ Np) × 100

= (
191

230
) × 100

= 0.83 × 100

= 83

Nm = 654

Npi = 196

PC = (Npi ÷ Np) × 100

= (
196

654
) × 100

= 0.29 × 100

= 29

Operation Critical Total

Nm = 5015

Npi = 492

PC = (Npi ÷ Np) × 100

= (
402

5015
) × 100

= 0.08 × 100

= 8

Nm = 230 + 654 + 5015 = 5899

Npi = 191 + 196 + 402 = 789

PC = (Npi ÷ Np) × 100

= (
789

5899
) × 100

= 0.13 × 100

= 13

This shows that while the patch coverage of the organisationis poor at only 13%, the mission

critical systems are well patched. The nature of the vulnerability could be that the business

and operation critical priority groups are well protected with adequate edge defences and

CHAPTER 3. POLICY SOLUTIONS 71

less vulnerable than the mission critical services resulting in the focus on mission critical

machines. Alternatively, if the vulnerability was more likely to affect user desktops these

metrics should set off warning bells.

• Ten days after the release of a patch the organisation has defined a target patch cov-

erage of 50%. The calculations above are re-calculated as 97% mission critical, 82%

business critical, 50% operation critical resulting in a total of 56% organisational patch

coverage. If the low patch coverage in operational prioritymachines is unusual, an in-

vestigation could help identify problems such as a deployment fault or many out of

range mobile devices.

• Several days later an automated worm is released exploitingthe vulnerability. The

metrics are again re-calculated after responding to any problem, and it is found that

the total patch coverage is now at 98% putting the threat fromthe worm at a very low

level.

• Another target at thirty days states that patch coverage should be 95% or higher.

As the metrics are calculated they can provide information on improving the current deploy-

ment or help identify deployment problems. In addition, they can serve as input to the risk

assessment. Maintaining a database of these metrics for past patches will allow the patch

coverage at the fixed points (10 and 30 days) to be compared between patch deployments.

3.2.3.8 Maintenance

The maintenance phase is initiated when patch deployment completion, as defined in the change

management plan, is reached. This is a meta-policy step thatshould allow the lessons learned to

be converted into feedback with which the policy can be improved. It is a reflective step allowing

aspects of the implemented policy which are not working effectively to be modified.

Each step of the policy should be examined for errors or problems that can be improved. Infor-

mation gathering may require better research methodologies and resources or its host discovery

methods may need to be improved. Risk assessment may requirethe risk thresholds which deter-

CHAPTER 3. POLICY SOLUTIONS 72

mine action to be modified or the methods by which risk is measured changed. Scheduling may

require a different schedule that better fits the organisations needs, or a modification to the trig-

ger events to ensure a faster response to patch announcements. Testing may be incomplete and

require additional documented testing procedures to be added. Deployment may be consistently

missing several mobile devices and require improved methods for doing so. The verification step

provides redundancy for other steps, and may help turn up inconsistencies in the way certain

steps are implemented, the cause of these inconsistencies should be investigated and corrected.

For example during verification it may be discovered that thehost database does not identify

mobile devices correctly, or that patch testing did not identify certain potential errors or whether

the patch really did remediate the vulnerability correctly.

During this step other activities of the organisation should be examined to see if appropriate

interactions between them and patching can be established.Two important activities that will

most certainly impact on patching are staff training and software acquisition. However, the

broad range of activities within an organisation may present much wider opportunities for the

patch management policy to be matured.

Training Skill shortages within the skills required for patch management should be identified

and training provided. Usually, much of the skills and expertise required to implement the organ-

isational patch policy will reside in the patch and vulnerability groups and any subgroups they

utilise. However, these skills are not always present or at an acceptable level and some training

may be required. Additionally, some departments may require software that isn’t officially sup-

ported by the organisation, or mobile end-users may be required to perform some of the steps

from the policy themselves (although this should be limited). To meet these need, patch, remedi-

ation and vulnerability management training should be integrated into the organisational training

regime where appropriate.

3.2.3.9 Summary

A summarised view of the policy is provided in table 3.2 and the figure 3.3.

CHAPTER 3. POLICY SOLUTIONS 73

Figure 3.3: Diagram of the proposed Patch Management policy

3.3 Conclusion

Effectively managing vulnerabilities requires more than amethod to Effectively deploy patches.

Many factors are relevant in making decisions about how bestto limit the vulnerability of an or-

ganisation. The primary and final remediation of a vulnerability bring with it its own problems.

Managing all of this crosses multiple disciplines including vulnerability, configuration, change

and risk management. This complexity can soon get out of handand patching can become a

chaotic affair performed in a panic and informed by incomplete and inaccurate information, cho-

sen because it was the only information available. Implementing a comprehensive patch man-

agement policy is vital for ensuring the ongoing security ofan organisation. The steps described

in this chapter provide a description of how such a policy canbe implemented. Each step draws

from the work of several high quality sources and a thorough understanding of the current patch

management field. Unfortunately, each organisation is unique, and the steps outlined describe

how a process can be implemented, not what process should be implemented. A discussion on

how to asses risk, for example, cannot judge the acceptable risk thresholds and levels appropriate

for individual organisation. Specifics should be tweaked and augmented with internal policies,

practices and most importantly the experience of existing personnel. The trends described in

section 2.3 appear to be getting worse, not better. Implementing a policy such as this takes time,

initially patch testing and risk assessment will be slow as an organisation learns how best to per-

form those activities in their context. Malicious attackers on the other hand have a head start and

appear to be learning and collaborating. This impetus makesimplementing an effective patch

management policy critical.

CHAPTER 3. POLICY SOLUTIONS 74

This chapter has provided a discussion on what steps are required for the effective management

of patches and vulnerabilities. It has focused on organisations as users of software. In the next

chapter the actions of vendors when they release patches areexamined, and guidance on how to

best implement a patch release program in light of the complexities of vulnerability disclosure

is discussed. This should complete the picture of how to manage the complete vulnerability

life-cycle.

Chapter 4

Vendor Patch Release Policy

4.1 Introduction

In the previous chapter a discussion as to how users of software could best implement a policy

for managing the patches released by creators of the software in response to discovered vulner-

abilities. In this chapter the roles are somewhat reversed,and a discussion as to how creators

of software can best implement a policy for releasing patches is discussed. For the purposes of

simplicity users of software will be called end-users and creators or maintainers of software will

be called vendors.

Effective policies are not only the responsibility of the users of software (end-users), software

vendors must have a clear understanding of how they manage the patches they release and the

best way to release them. Historically vulnerability disclosure and responding to vulnerabili-

ties has proved difficult to standardise, with a high level ofconfusion and antagonism between

security researchers and vendors. To combat this and ensuremeaningful and useful interaction

between researchers and vendors several disclosure policies have been suggested; a resource

dedicated to collecting publications related to disclosure lists a total of twenty two different dis-

closure policies published between 1999 and 2004 [114] by vendors, security researchers and

third parties. This confusion makes it difficult for vendorsto standardise on a release policy, and

instead the responsibility for formulating an effective patch management policy is passed onto

the end-user. As will be demonstrated in this chapter, this is because the type of disclosure has

an impact on the effectiveness of a vendor’s patch release policy.

75

CHAPTER 4. VENDOR PATCH RELEASE POLICY 76

In an effort to ease the administrative burden of patching onend-users some vendors have decided

to move to a predictable patch release schedule. The first vendor to announce such a move was

Microsoft. Soon afterwards Oracle and Adobe announced theywould also move to a predictable

cycle. John Pescatore of Gartner believes predictable patch release schedules are on their way

to becoming an industry standard [115]. However, simplifying a patch release cycle ignores

the complexities that the full disclosure debate has introduced and risks oversimplifying the

matter, as will be demonstrated below. In both Microsoft andOracle’s case, the reactions to the

announcements were varied. Some security experts were for the move [116, 117], others against

[118] and the majority were silent, the lack of consensus indicated a shortage of research and

understanding as to the possible effects. Since then both Microsoft and Oracle have both come

under heavy criticism, and received praise for their patch schedule implementations by security

professionals commenting on the same events. Propagating this policy to other vendors without

a thorough analysis and with little understanding of the effects would not be desirable.

Surface observations of the implemented schedule have revealed both successes and failures.

This chapter provides a detailed argumentative analysis ofpatch release schedules, and their

effectiveness. By examining examples of how various types of disclosure affects the risks faced

by end-users, recommendations on how patch schedules should be implemented and when they

are effective, or not, are formulated. In addition, lessonslearned from recent public security

incidents are used to suggest additional improvements to the process. The resulting observations

are used to describe a method for other vendors to implement such a cycle that will both minimise

risk and help ease the burden of patching on administrators.

4.2 State of the Art

In the past vendors operated without an obvious patch release schedule. When a vendor was

notified of a vulnerability either through delayed disclosure or otherwise, the general approach

was to create a patch and distributed it as soon as possible1. The problem with the ”release when

ready” approach is that it requires end-users to continually monitor patch and vulnerability an-

nouncements. The average systems administrator has to check for new security patches, usually

daily or weekly depending on the available resources. This creates a situation where, combined

with worsening number of vulnerabilities described in section 2.3 and additional problems cre-

ated by patches described in section 2.4, many administrators, either due to a lack of resources
1Some vendors had a more nuanced approach, however, this is not currently relevant and is discussed later

CHAPTER 4. VENDOR PATCH RELEASE POLICY 77

or will, just weren’t installing patches effectively. Eschelbeck [7, 8, 9] is the only researcher at

the time of writing to have provided empirical data demonstrating the impact of patch release

schedules. In 2004 Eschelbeck’s data [9] shows that it took 21 days to patch half the vulnerable

machines on the internet after a patch was release (i.e. at 21days 50% of vulnerable machines are

patched), and 62 days for internal systems. Internal systems are increasingly vulnerable as shown

in section 2.3.2, due to the increased multiplexing of protocols over fewer ports, and content con-

trol decisions moving from the organisational network boundary to the end-user. Thus, internal

systems have become necessary to protect as you would external systems, and this window from

patch release to patch deployment (62 days) allows ample time for intrusions. Several notable

examples of this have been large scale worm attacks such as the Code Red, Nimda, Sadmind,

SQL Slammer, Blaster, Sasser, Witty and Zotob worms, which all showed significant numbers of

internal ’desktop’ machines infections. To combat this twohigh profile vendors, first Microsoft

[119] and then Oracle [120] and more recently Adobe [115] chose to move to a monthly patch

release schedule. The caveat was that critical patches could be released out of schedule, similar

to the internal policy of some organisations where criticalpatches are given an expedited install

plan (see section 3.2.3.3). Microsoft chose to release patches on the second Tuesday of each

month (a monthly release), while initially Oracle chose to follow suit, then changed to a quar-

terly release cycle [121]. However, Oracle have come under heavy criticism with some patches

being released containing flaws up to three years after the vulnerability was announced [122].

Adobe, while planning to implement a monthly schedule, had not done so at the time of writ-

ing. Oracle’s response to published vulnerabilities and quality of released patches has been poor.

Most recently, Gartner came out severely criticising Oracle’s patch practices [123]. Thus, given

the lack of alternatives Microsoft provides the best implementation of a patch release schedule

and will be the focus of the examples used, however this discussion is intended to be relevant to

any vendor implementing a patch release schedule. In particular, this discussion applies to both

open source and proprietary vendors.

The next iteration of Eschelbeck’s research [8] showed thatthe scheduling appears to have im-

proved things somewhat. In 2005 it took 19 days (down from 21)to patch half of the vulnerable

machines on the internet, and 48 days (down from 62) to do the same for internal machines. The

improvement in patching speed is provided in table 4.1. However, the improvement in patching

is likely due to many other factors such as the renewed hype around patching, better patch and

vulnerability notification and better automated patching tools, and cannot all be credited to patch

schedules, especially since many vendors do not implement schedules as yet. The specific im-

pact of scheduled patches was measured by Eschelbeck as being installed 18% faster. Additional

CHAPTER 4. VENDOR PATCH RELEASE POLICY 78

statistics from Microsoft [124] indicate that the number ofpeople applying Microsoft patches

has improved dramatically (sometimes as high as 400%) sincethe change to a regular patch

schedule. At first glance, the release schedule appears to bevindicated and proved as successful,

however this research hypothesises that there are other intrinsic flaws in a patch release cycle that

cannot be discounted.

2003 2004 2005
External System’s Half-Life 30 days 21 days 19 days
Internal System’s Half-Life N/A 62 days 48 days

Table 4.1: Half-Life of Vulnerabilities [7, 8, 9]

4.3 An analysis of patch schedules

This section provides an argumentative analysis of patch schedules. An analysis of the specific

effects schedules have when vulnerabilities are discloseddifferently is provided. Some back-

ground is necessary for the discussion, namely what arguments the instigators of patch schedules

provide and some background on the types of disclosure.

Specifically a patch schedule provides a predictable routine describing how often and when

patches are to be released, with a constant time between patch releases. This is supposed to

provide two primary benefits:

• Higher Quality Patches

• Better Patch Deployment Planning by End-Users

These improvements are advanced by vendors in the various press releases and discussion on

implementing schedules [115, 119, 120]. There are other indirect benefits sometimes cited, such

as faster deployment and greater patch deployment. However, these are knock-on effects of the

improvement in quality and planning listed above and are notsolely influenced by quality and

end-user planning alone. For example, more detailed advisories, advertised to a wider audience

could also result in faster deployment due to more readily available information for decision

making, and greater deployment due to a wider demographic being aware of the patches. Thus,

CHAPTER 4. VENDOR PATCH RELEASE POLICY 79

the focus will only be on the direct benefits claimed by vendors. The analysis below discusses

what trade-offs occur in gaining these benefits, and if such trade-offs are acceptable. Most im-

portantly, these benefits will provide ample justification for a patch release schedule if and only

if they;

1. Are actually achieved

2. They are not achieved at the cost of a large increase in risk

3. They cannot be achieved through better means.

4.3.1 The Disclosure Debate

Before a discussion can be had arguing for the differences created in a schedule by different types

of disclosure can be had, some background on the types of disclosure and the disclosure debate

is necessary.

There are two primary types of disclosure, delayed disclosure and instantaneous disclosure. De-

layed disclosure is often referred to as ’responsible disclosure’. Unfortunately, this is an emo-

tionally laden term which is not always accurate and will be avoided in this discussion. There

has been much debate in the internet community about the socially optimal method of disclosure.

The full disclosure movement of the late 90’s argued that by providing as much detail about a se-

curity vulnerability, the information was brought into theopen and provided administrators with

information with which to make their own security decisions. The introduction of the BugTraq2

and Full Disclosure3 mailing lists were an important part of this, where previously vulnerabil-

ities were discussed in private between security professionals, now the information was freely

available [125]. Aroraet al. [126] state that proponents of full disclosure argue that it“increases

public awareness, makes as much information public as needed for users to protect themselves

against attacks, puts pressure on the vendors to issue high quality patches quickly, and improves

the quality of software over time.” The problem with full disclosure is that without an effective

defence for the vulnerability, usually in the form of a patch, the information is of more use to

malicious entities than to users [127]. Thus the concept of delayed or responsible disclosure

was introduced, where the information is first released privately to a vendor and then disclosed

2http://www.securityfocus.com/archive/1
3http://lists.grok.org.uk/mailman/listinfo/full-disclosure

CHAPTER 4. VENDOR PATCH RELEASE POLICY 80

publicly when the vendor releases a patch [125]. However, many vendors adopted an attitude

of ’shooting the messenger’, where researchers who disclosed the vulnerability were publicly

slammed [128] for reporting on vulnerabilities that existed in the product whether they were

reported or not. Most recently, Michael Lynn had his presentation at the Black Hat 2005 confer-

ence literally torn from conference proceedings and threats of legal action from Cisco systems

for elaborating on a previously disclosed memory corruption vulnerabilities [129]. At the same

time, vendors would sometimes excessively delay the release of a patch [126]. This led to much

antagonism between vendors and security researchers. As a result third party trusted disclosure

intermediaries such as CERT/CC were used to intervene in vulnerability disclosures, providing

reasonable deadlines for vendors and ensuring security researchers disclosed ’responsibly’ [127].

This also resulted in several recommended disclosure policies, with the more noteworthy being

Rain Forest Puppy’sRFPolicy 2[130], the Organisation for Internet Safety’s policy [131], Russ

Cooper’s NTBugTraq policy [132] and CERT/CC’s policy [133]. Several papers have been writ-

ten discussing the pros and cons of non-disclosure, full disclosure, partial disclosure and ’socially

planned’ disclosure[68, 4, 134, 126, 127, 125, 135]. A discussion on the various types of dis-

closure is beyond the scope of this section; a simple summaryis that the debate has fallen on the

side of delayed disclosure. It is sufficient to understand that there are two types of vulnerability

disclosure, one in which the public becomes aware of the vulnerability when a patch is released

and the other where the public and the vendor become aware when the vulnerability is released.

4.3.1.1 Delayed Disclosure

Figure 4.1 provides a visual depiction of a simplified vulnerability life-cycle based on the model

presented in section 2.2, in which the disclosure is delayed.4. The vulnerability is created when

the software is first developed. At some point the vulnerability is discovered, this can happen

multiple times and by different parties. The vulnerabilityis then privately reported to the relevant

vendor and a patch is developed. At this time the only exploitation of the vulnerability occurs

by the original discoverer and is of a limited scope. When thepatch is ready, the vulnerability

is publicly disclosed and corrected at the same time. At thispoint the number of vulnerable

machines starts to decrease as patches are installed. At thesame time the disclosure of the

vulnerability details and the ease in which patches can be reverse engineered results in a rise

in public exploitation of vulnerable machines. As the vulnerability and patch are publicised the

4The vulnerability life-cycle used here is simplified to highlight the differences between the types of disclosure,
without muddying the waters with additional details.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 81

Figure 4.1: Delayed Disclosure and its effects on vulnerable machines and exploitation
Source: Modified from Rescorla [4]

number of vulnerable machines continues to decrease while the number of intrusions of still

vulnerable machines continues to increase. A scripted exploit could be released soon after the

release of the patch or longer. This will result cause a rise in the rate of exploitation, but is not

relevant for the purposes of discussing the type of disclosure. It is sufficient to know that active

exploitation is occurring, and is not included in the figure.

4.3.1.2 Instantaneous Disclosure

The process of instantaneous disclosure is similar to delayed disclosure, but with some pertinent

differences. Figure 4.2 details the relevant events. Once again the vulnerability is created and at

some point discovered. However, instead of reporting the vulnerability to the vendor the exploit

is circulated within a community of black hats and private exploitation occurs. Sometime after

this, the private exploitation is discovered ’in the wild’ by a member of the public community

and is reported to the vendor. At this point the process described in delayed disclosure occurs

but with the difference that public and private exploitation occurs until a fix is released. The rate

of exploitation will increase as the vulnerability is publicised and the exploit is possibly scripted,

CHAPTER 4. VENDOR PATCH RELEASE POLICY 82

Figure 4.2: Instantaneous Disclosure and its effects on vulnerable machines and exploitation
Source: Modified from Rescorla [4]

once again the increase in exploitation caused by the scripting of the exploit is not displayed.

The number of vulnerable machines will only start to decrease once a patch has been released.

4.3.2 Patch Schedules and Delayed Disclosure

When the vendor has a choice as to when a vulnerability is publicly disclosed, the benefits of

withholding the information until a patch is released are most obvious: The problem is acknowl-

edged but a fix is available. It is important to remind the reader that open source projects also

withhold vulnerability information from the general public until a patch can be developed. For

example the Mozilla foundation frequently fixes ’Security-Sensitive’ bugs which had not pre-

viously been disclosed [136]. A slight modification to ensure that these patches are released

per a defined schedule brings more benefits. Administrators can avoid surprises and make plans

ahead of time. Resources can be allocated, time scheduled and deployment planned. In addition

the vendor can thoroughly test a patch to reduce the likelihood of a faulty patch being released

without the pressures of attacks in the wild that need to be mitigated. With both the details of a

vulnerability available and a patch which can be reverse engineered, a scripted exploited, whether

CHAPTER 4. VENDOR PATCH RELEASE POLICY 83

released publicly or not, can be rapidly created [67]. This forces the vulnerability life-cycle to be

synchronised with the patch release schedule. The only potential problem is that knowledge of

the vulnerability may already exist within private and malicious groups or people5. This brings

us to the original justification of full disclosure; by publicly announcing a vulnerability and en-

couraging people to patch, the number of attack vectors available to such groups are reduced. If

there was no existing threat the vendor could silently fix thevulnerability in the next upgrade.

The only defence from attacks against unknown vulnerabilities is a comprehensive defence in

depth strategy which will hopefully mitigate or at least detect such an attack. Organisations cur-

rently face these threats, and releasing the patch per a schedule which results in the patch being

delayed longer than if the vendor released it when ready, will not significantly increase the threat

to an organisation from malicious attackers. This assumes there is limited exploit distribution

within these ’underground’ groups, a safe assumption in this case. Thus, the reduced threat from

faulty patches and the increased efficiency of an organisation’s patch management policy appear

to more than justify this marginal increase in risk.

An important assumption is that the vendor develops the patch within a reasonable time frame.

While the threats from an undisclosed vulnerability are limited, they are usually not zero. There

is a potential for a separate discovery of the same vulnerability to occur by a malicious agent, or

for the vulnerability to be ’leaked’ by either the original researcher or agents within the vendor.

The possibility of these events occurring increases over time and provides an incentive for a patch

to be developed quickly. Thus, patch schedules with too longa wait between releases are likely to

provide more than a marginal increase in risk and should be avoided. This is partly why Oracle

is invalidated as providing a good implementation of a patchrelease cycle, as their quarterly

release is too long. Unfortunately, there is little research into the probability of a leak occurring

or a black hat discovering the same vulnerability, and this claim is based on an informed guess.

4.3.3 Patch Schedules and Instantaneous Disclosure

When vulnerabilities are disclosed irresponsibly the vendor no longer has control over when

details of the vulnerability and a related exploit are released to the public. In the case of zero-

day exploits, a working exploit is made publicly available without providing the vendor with

advanced warning. Similarly, if no proof of concept exploitwas released with the vulnerability,

5It is possible that the number of publicly disclosed vulnerabilities and the poor patching record of many organ-
isations provides malicious groups with enough attack vectors without needing to research their own.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 84

the existence of a vulnerability for which there is no patch provides an attractive target and it

can be assumed an exploit is not far off. Current research indicates that the release of a scripted

exploit triggers the largest increase in attack activity [43]. Given the large increase in the threat

level, minimising vulnerable organisations exposure is a priority for minimising risk. Thus, the

critical factor becomes how soon the vulnerability can be effectively remediated. If a patch

schedule will allow the patch to be released as soon as possible then it is vindicated. If however,

the patch is delayed until the next release date instead of being released as soon as possible, this

action is only justified if significant other benefits occur that cannot be achieved by any other

means. The two benefits most commonly cited, as mentioned in the previous section, are that the

delay due to the patch schedule allows more testing and allows administrators to plan for patch

deployment. Both of these will be examined.

4.3.3.1 Quality

The argument for improved patch quality through more patch testing can be a persuasive one. The

effort required by an organisation to minimise the risk of a patch causing problems are substantial

and, as shown in section 3.2.3.4, the single largest bottleneck of patch deployment. Improving the

quality of patches to a point where they could be deployed with little testing would substantially

speed up patching and reduce risk. The argument is that by delaying the release of a patch, the

vendor can engage in a thorough testing process. For examplewhen a vulnerability in WMF files

was discovered in the wild (a type of instantaneous disclosure exploit) [71], Microsoft’s Security

Response Centre had this to say about the patch [137]:

We have finished development of a security update to fix the vulnerability and

are testing it to ensure quality and application compatibility. Our goal is to release

the update [...] as part of the regular, monthly security update release cycle, although

quality is the gating factor.

However, the question must be asked: why must this testing beconducted in isolation? Surely

collaboration with the wider community of end-users utilising the vendor’s products would re-

sult in an increase in testing and wider test bed. If the reader will bear with us, the benefits of

community collaboration are well demonstrated by the activities of Lawrence Lessig, a Stan-

ford professor of Law, who has been pioneering a movement named theCreative Commons6.

6http://creativecommons.org/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 85

This movement seeks to encourage collaboration and remove the systems of control that seek

to monopolise creativity. Lessig and his followers advocate aremix culturewhere the works of

others can be freely used and built upon. One example of the benefits of such a culture were

demonstrated when Lessig released his bookFree Culturefor free over the internet, something

that until now would have been ludicrous to suggest to a publisher.

Last year Penguin Press made an unprecedented move to release Lessig’s ’Free

Culture’ under a [...] license that enabled people to freelydownload the book from

the internet, and make derivatives for non-commercial purposes. After 24 hours, the

book had been made available under 9 separate formats (txt, pdf etc.), after 36 hours,

an audio version of the book had been announced, after 48 hours, a wiki had been

launched [...] for others to build on and add to, and after oneweek, 200 000 copies

of the book had been downloaded. Today, non-commercial translation projects have

started in Chinese, Catalan, Danish, French, German, Italian, Polish, Portuguese (2)

and Spanish (2). There are 3 audio versions of the book as wellas versions for the

Palm, MobiPocket and Newton. [138]

Since then several other derivatives have been created, including more ebook versions and sev-

eral easy to use hyperlinked versions. However, such creativity and collaboration is not unique to

publishing and and provides a highly appropriate analogy toa recent event in the world of patch-

ing. When the WMF vulnerability for which no patch was available was discovered on the 27th

of December 2005 [139, 140]; one day later initial anti-virus [141] and snort intrusion detection

signatures [142] were available for the first variant; two days later a partial workaround for the

vulnerability was posted [143], a movie of an exploit occurring was provided [143] and malicious

sites exploiting the vulnerability were being shut down [144, 145]. Five days later a third-party

patch was provided by Ilfak Guilfanov [146], later that day the patch had been disassembled

and verified by the Internet Storm Centre (ISC) which offereda digitally signed version [147];

a block-list of malicious sites and net-blocks utilising the exploit was created [148] and CERT

provided a detailed vulnerability note on the issue [139]. Six days later a version of the unofficial

patch was made available that allowed for an unattended install [149], it was distributed along

with scripts for deploying the patch enterprise wide [150].On the same day ’safe’ versions of

the exploit were provided for vulnerability testing [151] along with an executable vulnerability

checker for vulnerability testing and patch verification [152]. The next day a comprehensive

FAQ on the vulnerability was made available by the ISC [153],within a few hours this had been

CHAPTER 4. VENDOR PATCH RELEASE POLICY 86

translated into 12 different languages, which had increased to 17 by the next day [154] along

with presentations available in several different formats[153]. Eight days later the unofficial

patch was made available as a Microsoft Installer Package (MSI) by Evan Anderson [155], for

easier deployment, and this too was verified and signed by theISC. Later that day the site hosting

Guilfanov’s patch experienced difficulty due to high load, afew hours later it had returned with 9

additional mirrors serving the files [156]. During this time, Microsoft maintained that an official

patch would only be released on the 10th of January 2006 during the normal patch scheduled

release [157]. After massive consumer pressure Microsoft eventually capitulated and released

the patch on the 5th [158].

Why then did Microsoft not cooperate with this community in developing a patch? If knowledge

of the vulnerability already existed then the benefits of keeping the patch confidential are lost,

particularly when beta patches could be improved on and tested by such a wide and active com-

munity. Ironically, Microsoft possibly acknowledges thisargument with their Security Update

Validation Program (SUVP), which allows for patches to be beta tested within a chosen group

of organisations, such as the US Air Force [159]. Microsoft benefits by the additional testing

provided by an organisation with enough resources and an interest to thoroughly test patches,

and in return the Air Force benefits from the early protectionafforded by getting a jump start on

their patch deployment process7. Although members of the SUVP are not allowed to use these

beta patches in a production environment, they can benefit from early testing and ensuring their

configuration is supported. There is no reason to assume these benefits would not scale if such

a beta program was extended to include the public. A possiblecounter-argument to this is that a

vendor can implement a better planned testing process, whereas testing within a community will

involve a lot of redundancy and cannot be guaranteed to perform all necessary tests. However,

this is simply a false dichotomy; all the benefits of a well planned vendor test schedule can be

accrued in addition with testing input from a community. Tools and mechanisms allowing mem-

bers of the community to interact and share their testing experiences already exists in the form of

public mailing lists such as BugTraq and PatchManagement8. The only modification required to

take advantage of this testing community is to release the patches early and clearly mark them as

unsupported beta’s. By providing obvious warnings of the dangers inherent to deploying a beta

patch, for example on the patch download site and in the actual patch’s installer, or taking further

steps such as providing a registration system, users who do not know better can be prevented

7Given the ease with which exploits can be reverse engineeredfrom patches, it is worrying to contemplate the
American military being given such offensive capabilitiesbefore the rest of the world.

8http://patchmanagement.org/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 87

from installing these beta patches.

The level of community involvement in response to the WMF vulnerability, particularly related

to the unofficial patch, is unusual. While IDS and AV signatures and cooperation to shut down

malicious sites are thankfully fairly standard, the community does not always get as involved as

it did for the WMF vulnerability. The increased threat levelof this vulnerability combined with

confirmed inaction from Microsoft may have lead to the situation. However, while arguments

claiming that one cannot always expect this level of community involvement are correct, this

does not invalidate the point. If the community were to provide no additional help or guidance,

an unlikely case, the vendor would still not lose anything byreleasing beta patches and the

community would at worse not benefit from the early release, but not lose anything either. If the

vendor were to release details of which configurations the patch had been successfully tested on,

the few who fulfilled those criteria could benefit from early patching without having to wait for

all testing to be completed, ensuring that even if the community were of no help with testing, the

exposure of some organisations could be minimised sooner.

4.3.3.2 Planned Deployment

“Having a predictable schedule makes it easier for customers to plan and when

you can plan, it puts less stress on the customers’ infrastructure and their people and

the results are better.”

– Mike Nash, Corporate Vice President responsible for Security, Microsoft [160]

Providing a predictable patch release schedule can endear end-users to their vendor. The capa-

bility to plan and allocate resources ahead of time results in a much smoother deployment with

less chance of errors. It moves patching from an emergency-mode procedure to an understood

business process. Unfortunately, these benefits are once again only available if the vulnerability

disclosure was delayed. Threat and vulnerability monitoring are a separate process from patch

deployment. A patch schedule helps to synchronise the release of the patch, vulnerability and

exploits so that threat, vulnerability and patch monitoring can likewise be synchronised. How-

ever, if the vulnerability was instantaneously disclosed the vendor is not able to maintain this

synchronisation. Thus, an end-user needs to be constantly monitoring their network for attacks

and understand and respond to potential threats. If a significant threat and vulnerability are dis-

covered a risk assessment must be conducted and steps taken to mitigate the risk. This must be

CHAPTER 4. VENDOR PATCH RELEASE POLICY 88

conducted whether the patch exists or not. Thus, the exact emergency mode scheduling patching

seeks to avoid persists. The best way to “put less stress on the customers’ infrastructure and peo-

ple” is to provide an effective remediation as soon as possible. Placating end-users and playing

down the threat to maintain the patch schedule instead of releasing a beta patch and encourag-

ing community support to develop quality remedies is counter-intuitive. Even if the benefits of

planning did apply in this situation, the corresponding increase in exposure is an unacceptable

trade-off. This increase in exposure makes it more likely that an intrusion may occur. Intrusions

are usually unscheduled and costly to recover from which would provide a greater inconvenience

than deploying an unscheduled patch. The emphasis within the patch management community

and this document is for an organisation to perform their ownrisk assessment and choose a

course of action relevant to their needs. However, without the option of an effective remediation,

a vendor would be severely limiting the organisations options for dealing with this risk.

4.3.3.3 Examples

The critical flaw in a patch release schedule is that it assumes all patches are responsibly dis-

closed. While the WMF vulnerability has provided the primary example used in the discussion

above, there are other examples of instantaneously disclosed patches that have remained un-

patched for a significant amount of time and resulted in a needless increase in an organisation’s

exposure to threats. Once again, the focus on Microsoft is unavoidable given the lack of any

other vendor having effectively implemented a patch release cycle. The WMF vulnerability is

unique in its level of community support and discussion, particularly from Microsoft who have

been reluctant to discuss their motives in the past. Thus, the examples below are of vulnerabil-

ities which could have been patched sooner, and were not for the sake of the patch schedule.

However, they do not demonstrate the same level of communityinvolvement as the WMF exam-

ple above and contained no serious flaws, indicating that thetesting within Microsoft is effective.

Unfortunately, they do illustrate both the unacceptable increase in exposure and an inordinately

large amount of time from vulnerability disclosure to patchrelease. It should be noted that these

examples are illustrative of the failings of a patch schedule for instantaneously disclosed vul-

nerabilities only; Microsoft’s patch schedule has proved quite effective for delayed disclosure

vulnerabilities.

Krebs [161] researched the time it took Microsoft to releasea patch from either the time of dis-

closure or the time it was reported to the vendor for 2003, 2004 and 2005. The dates and times

CHAPTER 4. VENDOR PATCH RELEASE POLICY 89

were gathered by contacting the original researcher who discovered the vulnerability and Mi-

crosoft. Unfortunately, according to our investigations,Krebs’ calculations appear to be wrong

[162] with inconsistent errors in the number of days from first disclosure until patch release and

the number of patches counted. However, the dates he gathered appear correct, and once the cal-

culations were fixed, because some days were too high and others low, his conclusions based on

the averages remain true. The results appear in table 4.2, and show that when Microsoft moved to

a scheduled deployment in 2004, the average time it took for apatch to be released for all vulner-

abilities increased. They also show that for instantaneously disclosed vulnerabilities Microsoft

has been getting faster at patching. Both these results makesense. The average time to produce

a patch has increased due to the additional testing and quality assurance that occurs, and the av-

erage time to produce a patch for instantaneously disclosedvulnerabilities has decreased due to

an increased security effort and an increase in threats. However, even at the lowest average of 46

days, this is far too long. This provides plenty of time for scripted exploits to be circulated and

used by anyone including unskilled attackers. To reiterate, even if the patch quality is increased,

the high exposure time brings this quality at too high a cost.By involving the community in the

testing effort high quality patches can be produced sooner in this situation.

2003 2004 2005

Number of Critical Patches 34 28 37

Average Days from Report to Patch 90.7 136 134

Average Days from Full Disclosure to Patch73.6 55 46

Table 4.2: (Corrected) Microsoft Time to Patch Summary

To back-up the claim that 46 days is too long for users to have to wait for a patch, two examples

of the type of damage that can occur during these long exposure times can be found in MS04-040

and MS05-054.

MS04-040 This Internet Explorer patch took 38 days to produce from thedate of public dis-

closure. This vulnerability was not disclosed to the vendorbefore hand. The average time taken

to release such a patch in 2004 was 55 days, thus, 38 days is well below the average. However

during this time a variant of the MyDoom virus used the exploit as a propagation mechanism

resulting in mass compromises. In addition, a banner-ad service was compromised and the ex-

ploit placed into the advertisements. These were then distributed across many high profile sites

CHAPTER 4. VENDOR PATCH RELEASE POLICY 90

such as The Register and BBC leading to a substantial number of compromised machines [163].

As a final blow the Bofra/MyDoom mass mailing worm was developed and used the MS04-040

vulnerability to infect a machines [164]. These three largescale incidents occurred within the 38

day window.

MS05-054 The original vulnerability related to this patch was publicly disclosed on May 28th

2005, however the vulnerability was described as a DoS attack and did not carry a high criti-

cality. Microsoft still had not provided a patch after five months, at which point it was publicly

disclosed, on November 21th, that the vulnerability could allow remote code execution raising

its criticality. Proof of concept code was provided and soonafterwards the attack was detected in

the wild [165]. A patch to repair the vulnerability was only released on December 13th as part

of the normal patch release. This means that the vendor had 177 days to develop a patch, but it

still took 22 days to produce the patch once it had been discovered as critical.

4.3.4 Conclusion

The conclusion is quite simply that the arguments for a patchrelease schedule assume all vul-

nerability disclosure is delayed. The benefits claimed witha patch schedule are that a higher

quality patch can be released and that end-users can better plan and schedule their deployments.

However, when a vulnerability is disclosed instantaneously, these benefits are either lost, moot

or could be better achieved. Patch quality could be achievedfaster by utilising a community

testing approach and scheduled patch deployments are not useful if it is likely to result in an

unscheduled post-incident recovery.

4.4 Advice for implementing a Patch Release Schedule

The prescribed policy is to have two release programs, one scheduled and predictable for delayed

disclosure vulnerabilities and one immediate and collaborative for instantaneously disclosed vul-

nerabilities. This simple solution is similar to what is already supposedly implemented by ven-

dors with their possibility of ’out of band’ patches. However, there are problems with the criteria

used to differentiate between when a patch should be released per schedule or not. In addi-

tion, specific guidance as to how vendors can most help end-users and involve the community

CHAPTER 4. VENDOR PATCH RELEASE POLICY 91

to increase patch quality faster is required. The policy discussed below provides a simple and

effective method for releasing high quality patches and helping end-users minimise their risk. It

first provides a clear criterion for discerning between which patch release mechanisms should be

used. Then it details how each mechanism can be implemented,with reference to several current

effective vendor practices.

4.4.1 Dual Schedules and Separation Criteria

As mentioned above, a vendor should utilise two release mechanisms. The first is a predictable

and regular schedule with the other an unpredictable ’when ready’ release. One of the current

criteria for distinguishing when to use which mechanisms appears to be risk. If a sufficiently large

risk exists in the form of a significant threat then a patch will be released out of band. Threat

is the deciding factor in the incomplete risk assessment conducted, as vulnerability appears to

make little difference. When a worm is released or significant exploitation is detected, there is

more pressure to release a patch out of band, often in the formof customer complaints and bad

press reports. However, if an instantaneously disclosed vulnerability indicates that a significant

portion of end-users will be vulnerable, then the pressure to patch only appears to come after

a large threat is detected. For example, Microsoft’s defence for releasing the WMF patch as

per scheduled indicated that their ’intelligence sources’did not perceive a large threat [137],

and only once significant customer pressure had been broughtto bear was the patch released

out of band. Thus, the current criteria can be extended to be one of either threat or external

pressure. There are problems with these criteria. The problem with responding to threats is

that a widespread and recognised threat does not negate the possibility or existence of targeted

and specific attacks. Vendors should be seeking to minimise all vulnerability, not to minimise

significant threats only. The problem with responding to external pressure is a similar one; once

people are detecting attacks it is often too late, vendors should be seeking to prevent an attack in

the first place. In addition, the size of the threat and external pressure are not an easy to measure

and objective criterion. A vendor’s view of threats abstracted across all end-users is naturally a

generalised one, so that while certain organisations may befacing significant threats and others

none, the view to the vendor is only a medium threat. As for external pressure, the amount of

’noise’ one group makes is only tacitly linked to the actual problem. Thus a specific, objective,

and measurable criterion is needed to differentiate between which release mechanism should be

used. This document proposes that the form of disclosure be that criteria:

CHAPTER 4. VENDOR PATCH RELEASE POLICY 92

If a vulnerability is disclosed responsibly then release the patch at the earliest pos-

sible scheduled release date. Alternatively, if a vulnerability has not been disclosed

responsibly then release at the earliest possible date, ignoring the schedule.

This is the most relevant criteria if the arguments given above, which conclude that the benefits

of patch scheduling only apply if a delayed disclosure is assumed, are taken into account. In

addition, this criteria is trivially easy to determine and can be objectively judged by both the

vendor and end-users. Vendors should adopt this as the discerning factor between a scheduled

release and a critical release and clearly communicate thisto their end-users to prevent misun-

derstandings.

4.4.2 Predictable Patch Release Schedule

Taking cognisance of the criteria above, the vendor should develop a regular schedule where

patches for vulnerabilities which had their public disclosure delayed will be released. To reiter-

ate, a delayed disclosure vulnerability is one which has been privately disclosed to the vendor.

Most often researchers, who disclose vulnerabilities privately, will synchronise the release of

their advisory for the time at which the vendor releases the patch. For example eEye security

maintains a list of vulnerabilities [166] they have reported to vendors, for which a patch has not

been released and they have been waiting to disclose their advisory. However, on occasion a

researcher will specify a fixed date at which they will disclose their research. If negotiations fail

and the fixed date is out of the schedule then the customers should be informed of the out of band

release. This is a rare occurrence however, and is an exampleof why vendors should attempt to

maintain good relationships with the security research community.

An important part of creating such a schedule is deciding on the length between patch releases.

The difficulty in setting this length is twofold. The first is in choosing a length that reduces

the time available for either the vulnerability to be discovered independently or leaked. The

possibility of a vulnerability being discovered independently is only a concern for schedules that

extends over several months. It is unlikely that such an extended schedule is necessary, as the

majority of patches should not take long to develop and test,particularly since the critical release

will require rapid patch development and testing. In addition, there is the possibility of delaying

the release of a patch for a number of schedule iterations. For the same reasons that the schedule

shouldn’t have too long between iterations, there should bea maximum cap on the number of

CHAPTER 4. VENDOR PATCH RELEASE POLICY 93

releases for which a patch can be delayed without very good reason. The second difficulty is

in ensuring that the release cycle is optimised for all end-users. The deciding factor in this

optimisation will be how often end-users can realisticallyafford to engage in patch management

activities. Customer feedback and surveys should be conducted to gauge the optimal length.

Bear in mind that customers will have a bias towards patchingless often as it translates to less

workload. This bias should be offset by the desire to minimise the potential of a leak or separate

discovery, and to keep the number of patches deployed per release to a reasonable minimum, as

offloading too many patches at once makes end-users risk assessments too complex, can impair

the efficiency of monitoring efforts and exposes an organisation to too many threats at once. The

current trend is towards a monthly patch cycle. A charitableassumption is that Microsoft, Oracle

and Adobe engaged in comprehensive end-user discussion andthe resulting choice of a month

is optimised for the above values. However, the needs of customers, the frequency at which

vulnerabilities are discovered and the speed at which patches can be developed are all dependant

on the vendor, and as such this value cannot be generalised across all vendors.

One potential concern of an ’industry standard one month patch release’ is that administrators

may be flooded with several patches from separate vendors on the same day creating the same

problems a vendor was trying to avoid. Alternatively, if thepatches are released on different

schedules at different times of the month, the problem of constantly applying patches which

schedules try and minimise is re-created. This is a difficultproblem that will affect end-users

with multiple vendors for which vulnerabilities are regularly released. While automated patch

deployment solutions will help with the deployment and installation of these patches, they pro-

vide little support for the larger and more time consuming problem of testing them. Ideally,

end-users will standardise on manageable baselines. It will be in the vendor’s interest to forge

connections between vendors whose software is commonly used in conjunction with each other

to ensure that the number of patches released at one time are kept to a minimum and interact

correctly. In addition, planning for patches to be releasedwithin short gaps of each other would

allow end-users to better plan deployment and manage threats than if all patches were released

on the same day. While this ’multiple vendor’ problem is quite limited at the moment, as more

vulnerability research occurs and consequently the numberof patches released grows, this prob-

lem may become worse in the future. Once such example of the multiple vendors problem was

on July 12th 2005 when patches from Microsoft, Oracle, Mozilla and Applewere all released

on the same day [167]. Granted, only two vendors engaged in a predictable release, but even if

end-users had been aware off all the patches released, some end-users requiring all the patches

would be forced into an awkward triage.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 94

As privately disclosed vulnerabilities must remain private until a patch is available, a discreet,

secure and confidential group of developers should be taskedwith managing security patches

and vulnerabilities. This is particularly true in open source vendors where the development is

by its nature, open. The majority of vendors already have such a group implemented, and it is

only mentioned here as a requirement in passing. The membersof this group should be held ac-

countable for any leaks and given the required access to ensure they can develop patches quickly.

Given that patch development cannot be a task assigned to a small and constant group and by

its nature spans all development and developers, mechanisms for temporarily bringing in other

groups of developers, testers etc. need to be developed withthe same levels of confidentiality

and accountability.

4.4.3 Critical Patch Release

The critical patch release mechanism will seek to release a patch as soon as possible after the dis-

closure of an instantaneously disclosed vulnerability, where the vulnerability was not privately

disclosed to the vendor before hand. In this situation the vendor would be informed of the vulner-

ability at the same time as the general public. This does not always occur through the release of

a vulnerability advisory. A zero-day exploit could be provided or a vulnerability advisory could

be accompanied by proof-of-concept code. In all of these situations, a vulnerability has been

instantaneously disclosed. Currently, some vendors already claim to have implemented such a

critical release strategy. However, as discussed above, this release mechanism is only invoked at

a subjective point determined by the vendor. In this version, the disclosure type of the vulnera-

bility is the only appropriate discerning criteria. If a vulnerability has been privately disclosed

and, before the chosen patch release date the vulnerabilityis either leaked or discovered indepen-

dently and publicly disclosed, a decision to shift the patchfrom a scheduled release to a critical

release should be made.

Once it has been determined that a patch should be fast-tracked and released as part of the critical

patch release mechanism, a vendor should seek to engage the community of end-users to help

ready a patch. The arguments discussed in section 4.3.3.1 described the benefits a community

can provide, and how keeping the details of a patch secret until release are counter productive.

The possible help a user community could provide is as limited as human imagination. Whether

it is documentation, vulnerability scanners, workarounds, third party patches or vital testing; with

the right motivation the skills of technical administrators can be leveraged. The work required in

CHAPTER 4. VENDOR PATCH RELEASE POLICY 95

developing and delivering high quality patches has a high level of commonality across patches.

This is not to say that the vulnerability and related fix are the same, but that all patches require, for

example, testing and documentation. A vendor should enumerate the required tasks and highlight

those where community support could provide a benefit. On-line collaboration tools to enable

the community to engage in the required tasks should be provided. Most often these simply

consist of an on-line forum; either a mailing list, forum software, wiki or bug tracking program

such as bugzilla9 can be employed. Peripheral benefits aside, the most specificand beneficial

area of community involvement is in testing. By providing alpha or beta quality patches for early

download, and sharing information on what has been successfully tested, a community can get

involved. If multiple beta versions of a patch are to be released, enhancing or providing a patch

roll-back mechanism would be one area where tools could be developed to aid testing.

A possible concern is that end-users would not be interestedin deploying patches that are not

at final release quality. However, end-users would not be applying beta patches directly to their

systems. An effective patch management policy should always include a comprehensive testing

strategy as discussed in section 3.2.3.4. In such a set-up nopatch should be deployed without

any testing, and the same would apply here. There are benefitsto end-users getting involved in

testing. By testing the patch on their specific configurationan end-user can ensure that the patch

finally released works correctly for them. In addition, if a patch appears to function correctly it

could be deployed early to machines that warrant it. Particularly since testing has a ’long tail’

where the initial work is in testing common configurations which apply to many users, whereas

the later tests usually only apply to a few users but require as much work. Once testing is

completed on the common configurations, many users could deploy the patch sooner or at least

get a head start on testing. For example, if a vulnerability primarily affects the Chinese version

of a vendor’s product, releasing the patch once the Chinese documentation is ready would allow

the majority of users to start their deployment without having to wait for all translations of

the documentation to be completed. The testing provided by the end-user community would

allow the vendor to test different configurations faster, and the ’release-when-ready’ approach

would allow more end-users to deploy patches and hence decrease their vulnerability sooner. The

only cost is a slight increase in the amount of testing performed by some end-users. However,

the size of the community will usually help to ensure no one end-user’s testing time increases

dramatically, as the work is distributed and testing performed by one group can benefit many

more with similar configurations. Thus, many end-users could continue as they do now and wait

until the final release of the patch.

9http://bugzilla.org/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 96

This release when ready approach can only help security by speeding the availability of vulner-

ability remedies. Only faulty patches being deployed on production machines would invalidate

this. Thus, the vendor must emphasise that only the final production release of the patch should

be deployed to production machines and all beta releases should be tested in a sand-boxed testing

lab. There is then the possibility of two advantages. The first is that the testing feedback provided

by the community will speed up the vendor’s testing process resulting in a patch being available

sooner. The second is that the patch, if it passed some configuration’s testing, could be deployed

sooner to some end-users without having to wait for every configuration to be tested.

The vendor should work hard to ensure all feedback is consolidated into a quality patch as soon

as possible. With proper encouragement, embracing the community prototyping approach will

help to cut down on the window of exposure from disclosure until a patch is available.

4.4.4 Encouraging Delayed Disclosure

Given the benefits evident when a patch release schedule is used for vulnerabilities which have

had their disclosure delayed, it is in the vendor’s interestto encourage delayed disclosure of vul-

nerabilities. Much discussion is available in each of the disclosure policies discussed earlier on

how to maintain an amicable relationship between the vendorand security researcher. Vendors

should make an effort to maintain positive relationships with the security community and vulner-

ability researchers in an effort to reduce the instances of instantaneous disclosure. Researchers

too should consider how to best minimise risk to end-users when disclosing vulnerabilities, how-

ever that is outside the scope of this discussion. Two vendors contrast quite differently in their

approach to this. Microsoft has done quite well in building its relationship with researchers over

the last couple of years. There are few examples of recent public outcries by researchers who

feel the vendor is not providing the patch within a reasonable time-frame. In addition, throwing

parties for security researchers at conferences such as BlackHat [168] and outreach events such

as BlueHat [169] have further helped to build a positive relationship. Oracle on the other hand

has created controversy by taking too long to fix some bugs [170], and providing poor fixes even

after these extended periods of time [171]. This has resulted in a negative perception of Oracle’s

patch release process and may decrease the chances of researchers working with the firm.

Another approach which has proved quite successful is the bug bounty program run by the

Mozilla foundation [172], where $500 is awarded for each previously unknown security bug dis-

covered in Mozilla software that is privately reported to the foundation. The foundation claims

CHAPTER 4. VENDOR PATCH RELEASE POLICY 97

that the bounty program is working well. As of December 2005 they had awarded $2 500 in

bounties since its inception earlier that year [172].

Additionally, relationships with security researchers can be smoothed by providing a clear and

accessible description of how the vendor’s organisation will respond when vulnerabilities are

reported. Defining time frames in which contact will occur can help to manage the expectations

of the researchers.

4.5 Conclusion

This chapter has provided a discussion around the benefits and disadvantages of implementing

a patch schedule. This discussion has provideda priori arguments on how patch schedules in-

fluence risk and are influenced by disclosure. These arguments have shown that patch schedules

provide two benefits to end-users; the first is a higher quality patch with less chance of a fault,

and the second is a predictable schedule which allows end-users to plan their resources and patch

deployment reducing the surprise factor and helping to integrate patching as a normal business

process. However, the argumentation also showed that thesebenefits do not accrue or come at too

high a cost when the vulnerability has been instantaneouslydisclosed. The patch quality could

be achieved better by releasing patches early as betas and gaining community support. Although,

this cannot eliminate the ”surprise factor” in these instances due to the unpredictable nature of

threats. To remedy this situation it is proposed that vendors maintain their patch schedule only

for delayed disclosure. The type of disclosure forms a clearand objective differentiator for which

patches should be scheduled and which shouldn’t. In the pastthe differentiating factor had been

a subjective threat assessment. In the situation of instantaneously disclosed vulnerabilities ven-

dors should implement a critical release strategy that releases a beta of a patch to a community

as soon as possible, allowing more testing to occur and providing benefits to end-users and the

vendor.

This chapter has provided a discussion on how vendors can better manage the risk end-users face

by patch release cycles. In the next chapter practical and available tools and solutions that can be

used to ease the burden of the patch management policy discussed in chapter 3 will be discussed.

Chapter 5

Practical Solutions

5.1 Introduction

"I need automation to deploy patches, I do not want automatedpatch manage-

ment."

– Tim Rice, Network Systems Analyst, Duke University Schoolof Medicine [39]

Some technical discussion is provided as to how aspects of patch management can be improved

upon with technology. The focus is first on the packaging and distribution of patches and second

on additional measures that can be used to limit the vulnerability of systems until a patch is

deployed.

5.2 Patch Management Software

In section 1.2 the timeless nature of patch management was introduced. Patches have existed

since software has existed and they have always been tediousand difficult to manage. In 1985

Larry Wall made distributing and merging patches to source code easier with the introduction of

his patchutility [26]. In the 1993 operating system vendors introduced tools to help automate

the process of keeping software up to date [173, 174]. In 1997software that allowed for the

management and deployment of standardised patches across multiple operating systems was

98

CHAPTER 5. PRACTICAL SOLUTIONS 99

proposed [175]. Advance to the present and we see that tools to manage application updates

have become a mandatory part of an operating system and automated patch deployment software

has become a growth industry with a flood of new patch management products and tools. A

report on the patch management industry showed that sales reached $80 million in 2003 and the

number of direct competitors topped the 20 mark[176]. With this many ’solutions’ available it

is tempting to believe the problem of managing patches has been solved. This section exists to

critically classify and analyse the many types of patch management software and demonstrate

which parts of the patch management process described in section 3.2, have been and can be

automated. The premise which introduces the need for such a policy, and which is discussed

here, is that: while patch management products fill a necessary purpose, they can only help

by automating task necessary to patch management, but neverautomate tasks sufficient for patch

management. The thorough understanding of the patch management process provided by section

3.2 demonstrates the difficulty of complete automation. In short this section concludes that patch

management is too complex, with too many variables requiring experience and human decision

making, for it to be completely automated. To quote Bruce Schneier [41]:

“If you think technology can solve your problems then you don’t understand the

technology and you don’t understand the problems.”

This is not to say that nothing can be automated. Patch management is necessary because of tech-

nology, and is an apt example of the productivity paradox [177], where technology introduced

to save time has resulted in a new set of time consuming problems. Thus, patch management is

dependant on technology and can benefit from it.

5.2.1 Functionality and Classification of Patching Tools

Simple put, there are a large number of patch management tools. A reference providing a col-

lection of reviews of some of the products [178] lists 22 companies, some with more than one

product, providing various forms of patch management solution. Each product implements vary-

ing levels of functionality. Most often patch management products are differentiated simply on

whether they utilise agents which must be installed on client machines, or not. This is a sim-

plistic differentiator of functionality, but is mentionedin several places while discussing patch

management software[46, 91, 94, 179]. A discussion on the use of agents is available in section

CHAPTER 5. PRACTICAL SOLUTIONS 100

5.2.2. The Gartner Group has described nine characteristics that an automated patch management

solution should contain [180]:

• The ability to create and maintain an inventory of systems including information about

installed software and running services. It should be able to discover new systems without

the need to distribute an agent.

• Information on the software and patch revision level of eachsoftware component on each

system.

• Automatic evaluation of patch dependencies and tracking ofwhich patches are out-of-date

or superseded.

• A dynamically refreshed patch inventory and ability to classify the patch according to

severity.

• Reports on what patches are needed on which systems by correlating information from the

various inventories. This should take into account the system’s role.

• The solution should provide for system groupings to allow for abstracting many machines

into one group. The system should also allow for role based-administration to allow dif-

ferent parts of the work-flow to be executed by different roles (e.g. Quality Assurance).

• A scalable patch distribution and installation method, providing for patch roll-back if nec-

essary.

• The system should be cross-platform, especially given number of devices including servers,

network devices such as routers, handhelds, cell phones etc. that need to be supported.

• The solution should leverage existing software for patch management and only introduce

a software agent where necessary.

While these criteria are fairly comprehensive, in an earlier publication of this work [95] it was

noted that they are not completely comprehensive and several additional ideal characteristics

were defined and on which this list builds.

CHAPTER 5. PRACTICAL SOLUTIONS 101

• The system should be secure. Being able to automatically deploy malicious content to

an entire organisation by compromising one distribution source is a tempting target for

attackers [181]. While all applications should attempt to be secure, patch management

tools are both a security critical application and a more likely target for attacks.

• Patches are being issued from multiple vendors and a patch management solution should

support this to prevent the need for multiple redundant patch management systems.

• The purposes of patches are to remediate vulnerabilities. There is not always a one-to-one

mapping between vulnerabilities and patches. The system should maintain as complete

as possible an inventory of vulnerabilities with the ability to test if the vulnerabilities are

applicable. This is particularly useful for confirming if a patch is effective in mitigating a

vulnerability.

• Provide detailed and powerful reporting mechanisms that allow information for risk man-

agement decisions to be easily gathered.

• Integrate with other security mechanisms to minimise vulnerability, particularly during the

window of exposure between vulnerability disclosure and patch deployment.

The words’functionality’ and’capability’ are often used as synonyms, however for the purpose

of this discussion they shall be used to represent two distinct concepts. What we notice about

the list resulting from the combination of the Gartner’s list and our own, is that some points are

discussingfunctionality, for example “an inventory of available patches should be implemented”,

and other points are discussing thecapabilitiesof that functionality, for example “the system

should be secure”.’Functionality’ will be used to discuss core features that directly support

and enable one of the policy elements described in section 3.2. ’Capability’ will describe a

general feature intended to modify one or more of the functional components. These capabilities

will imply extra functionality, but the scope of the discussion prevent examining them. In the

introduction to the policy framework described in chapter 3, it was noted that patch management

integrates with several other management fields; asset management, vulnerability management,

change management, configuration management and risk management. Patch management tools

demonstrate this integration. A summary of the policy discussed in chapter 3 is available in both

figure 3.3 and table 3.2. If we distill from this policy the functionality which can be supported

by an automated system, seven distinct areas of functionality are found. These seven primary

functional areas are based on; Gartner’s ideal characteristics, automated functionality discussed

CHAPTER 5. PRACTICAL SOLUTIONS 102

in chapter 3, the functionality available in some existing tools and the authors own insight. They

are:

1. Notification

2. Inventory Management

3. Vulnerability Scanning

4. Patch Testing

5. Patch Packaging

6. Patch Distribution

7. Reporting

These functionality areas are groupings of similar functions. For example, inventory manage-

ment would involve asset inventories, a patch database, an inventory of vulnerabilities etc. With

the functionality isolated from the original list, we can dothe same with capability. The resulting

capabilities are:

1. Allow arbitrary grouping and classification of inventories

2. Support patches from multiple vendors

3. Provide a portable cross-platform implementation

4. A focus on security, with regular authentication and authorisation of patches

5. Integration with other security applications

A brief discussion on each functional area is provided in thefollowing sections. This is intended

to be a technical discussion focusing on how automation can support a patch management policy.

The concepts are only briefly introduced, as it is hoped a fuller investigation and implementation

of such a patch management product will be part of future research.

CHAPTER 5. PRACTICAL SOLUTIONS 103

5.2.1.1 Notification

To ensure accurate risk assessments, as described in section 3.2.3.2, can be made, it is necessary

to receive regular notification of three aspects of the risk equation1:

• Vulnerabilities

• Patches

• Threats

Vulnerability A method of discovering new vulnerabilities and notifying athe patch and vul-

nerability group is required. There are many vulnerabilitydatabases, each of which provide some

sort of notification service. The rise of XML based RSS and ATOM feeds for easy syndication

means that these notifications could easily be integrated into an application, something vendors

should be encouraged to provide. Thus an ’interrupt’ approach can be used, where notifica-

tion will arrive when relevant as opposed to requiring an administrator to engage in ’polling’ by

searching through busy mailing lists such as BugTraq. For example the National Vulnerability

Database provides two feeds, one of all CVE vulnerabilitiesand one with deeper analyses [182].

The Open Source Vulnerability Database (OSVDB) [183], Secunia [52], ISS X-Force [184] and

SecurityFocus [185] vulnerability databases all provide syndicated XML feeds. OSVDB goes

one step further and provides an XML-RPC interface for dynamic real-time queries of the vul-

nerability database. There is a large amount of redundancy between databases and selecting

one vulnerability database as a source, with recourse to others for further research is preferable.

There may be some lag in databases adding information on instantaneously disclosed vulnera-

bilities, however the automated notification will save a considerable amount of time compared to

manual trawling of mailing lists.

Patch Similar to the vulnerability notification, many vendors provide XML feeds in order

to improve notification of released patches. For example Microsoft [186], Debian [187] and

FreeBSD [188] all provide XML feeds of their latest patches.The flexibility of XML can easily

allow feeds from relevant vendors to be aggregated and filtered for vulnerabilities affecting an

1These aspects are enough to determine risk based on affectedsystem’s criticality, but such an assessment should
still be done by a human agent.

CHAPTER 5. PRACTICAL SOLUTIONS 104

organisation’s deployed software. For unscheduled patch releases the automatic notification can

allow an administrator to be notified immediately and react quickly.

Threat Threat notification is more complicated due to the intrinsiccomplexity of the threats.

Some threat notification can be automated, particularly with tools that support correlating and

aggregating information from multiple network sensors. Tools such as Squil [189] or DeepSight

Analyser [190] allow for the information from multiple network monitoring devices to be cor-

related at one monitoring console. Threat management services such as DSHIELD [55] or once

again DeepSight Analyser can be used to detect wide-scale attacks. Specific attacks can be dis-

covered through the use of Intrusion Prevention Systems andhoney pots, where the first uses

signatures to detect an attack and the second can provide insight into an attacker’s methods, or

distract an attacker from real systems. A discussion of defence in depth tools is available in sec-

tion 5.3. Whatever monitoring devices are used, the information must be correlated to provide

effective notification. Too many false-positives will result in the sensor being ignored.

5.2.1.2 Inventory Management

This is a broad functionality group and one of the most critical. Based on the discussions in

section 3.2.3.1 we can see that the three primary inventories required are:s

• Asset inventory

• Patch inventory

• Vulnerability inventory

Asset Inventory In section 1.3 the difficulty of managing many patches for many vulnerabili-

ties in many software products and deploying them to many machines was highlighted. Section

3.2.3.1 discussed the need for proper asset management. This is a function that can benefit greatly

from automation. The process of discovering and enumerating all the hosts on a network, all the

software on each host and the patches both available and installed can be time consuming and

tedious without automation. Most patch management tools contain some combination of these

inventory management tools, allowing an administrator to both automatically populate the in-

ventory and better organise and track the large amount of information this will create. Advanced

CHAPTER 5. PRACTICAL SOLUTIONS 105

inventory management systems function as reporting tools allowing arbitrary, ad-hoc queries of

the state of the inventory. These queries can provide valuable information when performing the

kind of verification and reporting described in section 3.2.3.7.

Patch Inventory An inventory of all available patches is a basic requirementof a patch man-

agement system. This will be populated with patches discovered during the notification process.

The primary benefit of this inventory will be in helping minimise the number of patches required

to be reviewed in a patch management process. By resolving any internal patch dependencies,

for example excluding patches which have been superseded, or automatically resolving the order

in which patches should be installed. Further optimisationwill be provided by a cross correlation

with the asset inventory to exclude patches for software notinstalled or patches already installed.

Providing user modifiable areas so that testing notes and other discussions about the patch can

be added is useful, particularly if the patch and vulnerability group wants to create a centralised

organisational patch database.

Vulnerability Inventory The purpose of patch management is to resolve known vulnerabili-

ties. Thus, a database of know vulnerabilities is required.This database will be populated with

the high quality vulnerability information available fromvulnerability databases. Beyond listing

a CVE number and the affected software, vulnerability entries could include information from

the OVAL project [191] which provides a standardised XML schema [192] for describing how

a vulnerability can be verified. This could be integrated into a vulnerability scanner discussed

in the next section. This database too should correlated information with the other databases to

display how which vulnerabilities affect software actually deployed in the organisation.

5.2.1.3 Vulnerability Scanner

The difficulty with managing vulnerabilities is that they are an unknown risk. It is difficult to

quantify the expected number of vulnerabilities in a product before the vulnerabilities are an-

nounced. When a vulnerability is disclosed the possibilityof a risk is created, however whether

that vulnerability is applicable to the specific configuration of an organisation is not clear. De-

termining this is not an easy task. This is particularly truein the cases when little information is

provided with the vulnerability or it requires a complex setof pre-conditions to be true. To help

an administrator in this task, vulnerability scanners can be used. Vulnerability scanners do not

CHAPTER 5. PRACTICAL SOLUTIONS 106

mitigate the vulnerability, that is the job of the patch, their purpose is to discover the existence

of a vulnerability.

Given that not all vulnerability disclosures provide enough information with which to generate

a verification mechanism, sometimes the only verification that can be performed is to ensure

the patch has been correctly installed. This verification should not be part of the vulnerability

scanner. The vulnerability scanner should be able to independently test for vulnerabilities and

hence independently verify whether they have been successfully remediated by a patch.

Network-based vulnerability scanners attempt to interrogate the machine remotely and should

be used on all machines that are being patched. Local vulnerability scanners usually require the

installation of software on a machine and can be more time consuming to set up. Local scanners

should be used on critical server and machines that provide local access accounts. Local scanners

can usually perform a more in-depth scan, involving issues such as configuration vulnerabilities.

While network based vulnerability scanners are limited to what the machine presents to the

network, which in the case of some machines may be very little. Vulnerability scanning can

quickly become quite complex, and scanners usually only focus on a subset of functionality. For

example web applications have specific vulnerability scanning requirements that are different

from interrogating open ports for vulnerable services.

5.2.1.4 Patch Testing

Software to support patch testing is notable only in its absence. Virtual machines were discussed

in section 3.2.3.4. They can provide a cheap method for multiplexing several different machine

configurations on one physical machine, saving hardware costs. However, they are limited in

that testing hardware specific interactions is poor, for example hardware drivers [109].

In observing the policy, testing of patches is the step likely to require the most amount of time,

and is the only defence against threats from faulty patches.Method that allow regression testing

of patched applications and software to be narrowed in scopecould potentially provide a dra-

matic speed increase in deploying patches. By tracking the dependencies of the software being

patched and particularly the dependencies of the patched component, a list of components most

affected by the change introduced by a patch can be generated. Much of this scoping is currently

done manually, for example if there is a patch to Mozilla Firefox’s handling of JavaScript web

CHAPTER 5. PRACTICAL SOLUTIONS 107

applications that rely on JavaScript should be the focus of testing instead of the print functional-

ity. Applications such as Microsoft’sStrider , or Sun Microsystem’ssowhat[110] can provide

this insight. In addition a well maintained patch database that includes testing notes, could al-

low patches with similar dependencies, that are re-issued or linked via a dependency can help to

prioritise tests that previously displayed problems.

5.2.1.5 Patch Packaging

Due to the proliferation of package managers and their related patch formats such as Debian’s

.deb, RedHat’s.rpm, FreeBSD’s ports and Microsoft’s.msithere is a lot of functionality that has

been placed in the patch distribution format, or package. Several aspects of patch packaging are

discussed below.

Dependency Tracking Many of the complexities of patch dependencies can be automatically

resolved by providing enough information in the packaging of the patch. There are several

different types of dependencies that could occur. The dependency types used by Debian’s .deb

package format are used as an example [70], as the dependencies between thousands of open-

source projects are difficult to maintain, and Debian’s APT has a history of performing this task

well.

• Depends - package A depends on package B if package A cannot run without without

package B. In the case of source packages this is further decomposed into packages re-

quired to compile package A (build dependency) and packagesrequired to run package A

(run-time dependency). This is a hard dependency.

• Recommends - package A recommends package B if the package maintainer decides that

most users would only want package A with the functionality of package B.

• Suggests - package A suggests package B if package B is related to or enhances the func-

tionality of package A.

• Conflicts - package A conflicts with package B when package A cannot run with package

B installed. This is often combined with ’Replaces’ as conflicts usually occur between

packages providing the same functionality.

CHAPTER 5. PRACTICAL SOLUTIONS 108

• Replaces - package A replaces package B when package A contains similar files to package

B that would result in the files from package B being replaced or overwritten if package A

were installed at the same time.

• Provides - package A provides package B when package A has thesame files and function-

ality as package B. This is an abstraction of functionality from a package as often several

packages exist to fulfil one purpose.

This dependency tracking needs to be implemented in a package management solution, and

should not be implemented in the specific patch package. However, the quality of dependency

tracking is directly related to how much information is provided by the actual patch package. An

alternative would be to provide the dependency informationthrough another channel, and min-

imise the patch package. Either way, detailed dependency information will ensure that patches

are installed smoothly and in the correct order with conflicts minimised.

Binary Patching Once the patches are fetched the dilemma of whether to replace the entire

binary or use a binary patch is presented. Microsoft used binary patching techniques in the

past, but decided to stop due to the unpredictable behaviourcreated by differing configurations.

Investigation into binary patching algorithms will be conducted and an option to either patch the

binary or replace it in its entirety will be given to the administrator. The advantages of binary

patching are a significantly reduced distribution time, especially for the often small changes that

a patch performs. The created patch and relevant documentation will then be stored in a patch

database. This is separate from the systems database as it could be beneficial to have this database

available to the Internet as a whole. This would allow organisations to learn from each other’s

patching techniques and reduce effort. This is best summarised in a quotation from Mykolas

Rambus, CIO of WP Carey, “It would take an industry body - a nonprofit consortium-type setup-

to create standard naming conventions, to production test an insane number of these things, and

to keep a database of knowledge on the patches so I could look up what other companies like

mine did with their patching and what happened.” [39] It is hoped that instead of a consortium,

a community could be created to share their experiences.

Traditionally patches are distributed by packaging files tobe replaced instead of packaging the

differences between the two versions. The advantage of the traditional method is that the same

package can be used to upgrade from any (or many) previous versions or for new users to perform

a fresh install. Thus, the software maintainer’s job is madeeasier. However, if the difference

CHAPTER 5. PRACTICAL SOLUTIONS 109

Patch Tool
bzip2 compression xdelta bsdiff

Binary bytes percent bytes percent bytes percent
gaim 317 699 100% 3 877 1.22% 782 0.25%

gaim-remote 4 979 100% 157 3.15% 140 2.81%

lsusb 20 673 100% 17 837 86.28% 15 731 76.09%

usbmodules 5 040 100% 3 815 75.69% 2 944 58.41%

BSD ls -> GNU ls 36 026 100% 36 919 102.48% 37 604 104.38%

Table 5.1: Table comparing file sizes of different methods ofdistributing the same file.

from one version to the next is only a small change, the user will still be forced to download a

full copy of the new software. An alternative is to package the incremental difference between

the two files: this would result in smaller patches, particularly when only a small change has

been made, as is often the case with security patches. Below is a comparison of two binary

patching tools, namely Xdelta [193] and bsdiff [194]. As canbe seen in the table 5.1 and figure

5.1 produced in an earlier work [111], the binary patches provide anywhere between a 90% to

25% reduction in size compared to a full binary download. Thelast example was a test case

where two completely different files were used (i.e. there were no similarities between the two

files).

However, there are some disadvantages to binary patches. A binary patch can only patch from

one specific version to another, thus if the end user is likelyto have several different versions

of a vulnerable software package, multiple binary patches may have to be distributed. This

can sometimes make a binary patch larger than a traditional patch, this is certainly the case

with Microsoft’s binary patching [195]. With careful package management this risk can often be

mitigated by tailoring the delivered patches to the systemsrequesting them (i.e. a semi-intelligent

patch tool) or by attempting to keep software versions in lock-step. The last disadvantage is that

it is harder for a software maintainer to manage binary patches with one version bump requiring

several binary patches to handle users who are not running the immediately previous version, as

patch will be required for each version to the current. This is a process that can be fairly well

automated.

Patch Authentication A vendor provided patch provides a central point of failure for every

application that will deploy that patch. One it is distributed to a client’s own centralised patch

deployment system, a central point of failure persists for all machines within that organisation.

Thus, the patch needs to be authenticated every time it is distributed. This is quite easily solved

CHAPTER 5. PRACTICAL SOLUTIONS 110

Figure 5.1: Graph of the effectiveness of binary patch tools

using public key cryptography. Providing a public key with which users can verify communica-

tions and patches signed by the vendor’s private key can helpensure that patches are not tampered

with. A model of how this can practically be achieved in open-source projects is provided in the

Strong Distribution HOW-TO[196], and is expanded on by Sohnet al. [197]. However there are

practical problems that often occur, where users do not update their stored copy of the vendor’s

public key, or vendors do not correctly sign patches [198]. If we assume the vendor is behaving

correctly, many of the tasks for authenticating packages can be automated, and should be, at

every point possible. Particularly once it has been downloaded from the vendor, and once it is

downloaded to a client machine.

Patch Back-Out Providing an effective back-out mechanism to allow changesintroduced by

patches to be undone would go a long way to minimising the potential threat of a faulty patch.

For some patches this can be quite a trivial process, where the files updated are merely reverted to

their original form. However, in some cases the changes introduce features that are not backwards

compatible. For example if a database schema is changed, anynew data added to the database

cannot easily be converted to the previous schema without considerable effort. Several vendors

provide roll-back mechanisms, however these are not alwaysused.

CHAPTER 5. PRACTICAL SOLUTIONS 111

5.2.1.6 Patch Distribution

Most current solutions distribute their patches via eithera single server or several servers de-

pending on the size of the organisation. This method is very inefficient and subject to dangerous

denial-of-service (DoS) attacks. The advances in peer-to-peer distribution should not be ignored,

and protocols such as Bittorrent [199] or other rapid distribution methods could provide benefits

in mitigating DoS attacks against central distribution centres. This will have the advantage of a

reduced bandwidth load on the distributing server [200], and provide greater security as many

more machines will need to be compromised to distribute a malicious binary (assuming the initial

upload is correctly authenticated). The public key infrastructure discussed in section 5.2.1.5 can

be implemented. The server component can be given a server root key whose public component

is published to the network. This would allow for each patch to be signed by the root server’s

key and the agent to verify this by checking against the published root key. Additionally, de-

ployment can be easily scheduled to occur at certain times appropriate to the organisation, even

when there is no one present, allowing unattended installs of less critical patches to occur with

minimal interference.

5.2.1.7 Reporting

Before a patch can be applied to mission critical servers thepatch needs to be tested with the

current system configuration, and processes for removing the patch are usually drawn up. This

can take a large amount of time to troubleshoot, which often leaves the system administrator in

a dilemma, to deploy the patch and risk losing critical services or not deploy and risk a security

breach. To resolve this a system administrator requires more information on the possible effect

an exploit could have on his organisation. Reporting is thena major advantage of such a project

due to the decision making benefits.

Reporting should involve extensive correlation of information between then vulnerability, patch

and hosts inventories, this should be extended with information gleaned during the deployment

process, such as patch and vulnerability verification information. The ability to create ad-hoc

queries into this data would allow an administrator to rapidly and accurately get data relevant to

the risk management decision making. Additionally, other tasks such as metrics and trends can

be extensively supported by a well implemented reporting function.

CHAPTER 5. PRACTICAL SOLUTIONS 112

5.2.1.8 Summary

Table 5.2 provides a summary of the functional areas and the tasks performed in each.

5.2.2 Architecture

“The entire agent vs. agentless debate [is] a red herring.”

– Mark Shavlik, CEO of Shavlik Technologies [179]

A brief discussion on the nature of agent-based versus agentless patch management solution is

included here only because it is discussed in nearly every paper on the subject [46, 91, 94].

However, we believe that this debate is essentially a propaganda war between various vendors

attempting to sell their product. The quote at the beginningof this section has been deliberately

taken out of context. It was taken from a paper entitledSecurity Patch Management: Break-

ing New Ground[179] published by Shavlik, vendor of the HFNetChkPro patchmanagement

solution. The title does not reveal that the paper is actually a discussion on the agent versus

agentless debate, and sides strongly with agentless technology. It is not surprising to learn that

HFNetChkPro is an agentless solution. The paper contained anumber of unsubstantiated and

demonstrably untrue claims, and of its meagre five references, one is referring to semantic web

intelligent agents and appears to be quoted incorrectly. A mistake the author makes is to compare

deployingpatcheswith agentless technology to deployingagents and patcheswith agent-based

technology, even though the agent would only need to be deployed once. We believe that papers

such as this and the resulting marketing hype as vendors attempt to advertise their selectively

agent or agentless solution as the best architecture has contributed to the amount of time that

has been devoted to this debate. Agent and agentless solutions are both necessary for a patch

management solution, and many tasks required for patch management can be done using either.

5.2.2.1 Agentless

And agentless or non-agent architecture should technically be able to operate without utilising

any software installed on the client machine, thus limitingthe server to things such as blind

vulnerability scans. However, in reality “agentless” is usually used to refer to the fact that no

additional software is required to be installed on the client, and standard remote administration

CHAPTER 5. PRACTICAL SOLUTIONS 113

1. Notification

• Vulnerability
• Patch
• Threat

2. Inventory Management

• Network hosts inventory

• Host software inventory, including patch level

• Available patch inventory with dependency tracking

• Vulnerability inventory

3. Vulnerability Scanner

• Remote network scanner
• Local host scanner

4. Patch Testing

• Virtual Machines
• Test scoping

5. Patch Packaging

• Authentication & Authorisation
• Compression

• Back-out

6. Patch Distribution

• Scheduler
• Distribution

7. Reporting

• Correlate information sources (hosts, software, patches,vulnerabilities, verification,
time)

Table 5.2: Patch Management Automation

CHAPTER 5. PRACTICAL SOLUTIONS 114

tools are used. The use of these administration tools amounts to the same essential functionality

as an agent-based architecture. The upshot of this is that itencourages the use of standards,

as default remote administration tools are used, instead ofproprietary communication protocols.

However, given that the agentless solutions often only use the remote administration capability to

deploy executable content (an agent), this is limited and the waters between agent and agentless

software become murky indeed. Given the difficulty of drawing a clear distinction between agent

and agentless software, and the inadequacy of the “any additional software required” definition,

we will provide a slightly different, but functionally useful definition.

Agentless technology is limited to a pushing patches to clients, this is an ’interrupt’ approach

where patches are pushed when they arrive instead of a pull based ’polling’ approach when

clients regularly query the server for new patches. Pushingpatches is limited in situations where

machines are not connected to the network during the patch deployment, requiring the server to

perform the same ’polling’ as an agent, albeit in reverse, todetect when disconnected machines

re-join the network. Conversely, this approach is quite useful in the case of new machines joining

the network that might not have had an agent deployed to them yet, or in situations where an agent

has failed, possibly due to conflict caused by a new patch. Thus, an agentless approach is both a

necessary and sufficient part of an effective patch management solution.

5.2.2.2 Agent

With agent-based architecture there is a central server which can serve patch files and an agent

that is installed onto the client machines to perform local tasks. The amount of work performed

by the server and the clients varies greatly depending on thefeature set of the product. Agent-

based patching can use either push ’interrupt’ or pull ’polling’ type patching. With agent based

patching, when patches are pushed to clients the server initiates a connection to the client ma-

chine’s agent and instructs it to deploy the patch. When patches are pulled the client machine’s

agent will initiate the connection to the server, copy the patch, deploy it and report back to the

server. Pushing patches allows a server to push patches to clients as soon as the patch is avail-

able. This can help in reducing the time to patch. However, ifa machine does not receive the

push instruction, the patch might not get installed. This isparticularly pertinent with mobile

devices which are often are an increased risk as they allow malware to piggy back its way past a

firewall. With pull based patching, the mobile device can ’check-in’ when it is back withing the

organisation instead of having to wait until the next patch release cycle. Ideally an agent based

CHAPTER 5. PRACTICAL SOLUTIONS 115

solution should utilise both methods to minimise patch deployment time. Patches can be pushed

as soon as they are available for deployment, and agents can check-in to pull patches at regular

interval or during a client-side event such as a reboot or rejoining a home network.

Thus, agent based technology gives you more options and morecontrol. It also prevents creden-

tials from being transferred around the network and reducesthe amount of bandwidth required.

Difficulty in installing agents can be avoided by including the agent in standard baseline images,

or using remote administration tools to deploy them. However, agent only architectures cannot

protect new machine on the network, or in situations when theagent fails and therefore, cannot

be sufficient for a patch management solution.

Thus, a combination of agentless and agent-based architectures are ideal for a patch management

solution.

5.2.3 Available Tools

Given the large number of tool claiming to be capable of managing the many aspects of patch

management, an in-depth review of each one is outside the scope of this research. In some earlier

work, an in-depth review of Microsoft’s WSUS patch management product was conducted. This

is included as appendix B. This section provides a brief description of the evolution of various

forms of patch management tools, and a classification of a handful of popular tools based on the

functionality and capabilities described above.

5.2.3.1 Evolution

Generally patch management software fits into one of five categories. These categories appear to

have arisen as software that provided an aspect of the patch management process bolted on the

ability to deploy patches, with software actually developed to manage the entire patch manage-

ment process (4) the only noticeable exception.

1. Vulnerability Scanner

2. Configuration Managers

CHAPTER 5. PRACTICAL SOLUTIONS 116

3. Package Manager

4. Original Patch Managers

5. Defence in Depth tool

The last category is usually consists of additional defences that can be used, and does not include

tools directly related to patch management. These tools will be discussed in section 5.3.

Vulnerability Scanners These tools started off as vulnerability scanners and realised the need

to provide the option of remediating discovered vulnerabilities. Thus, a method for pushing

patches to machines was added. These tools are usually agentless solutions that started off

as remote network vulnerability scanners. An example of this type of component is Shavlik’s

HFChkNet which started off as the engine used for vulnerability scans in Microsoft’s Baseline

Security Analyser (MBSA) scanner [201]. However, Shavlik has since split its products into

many separate products each implementing some specific functionality, thus a more appropriate

example may be GFI Languard [202].

Configuration Managers These tools attempt to centralise the administration of allaspects of

machines on a network or in a domain. Examples of these include Microsoft’s Systems Man-

agement Server (SMS) [203], IBM’s Tivoli [204] or Configuresoft [205]. These are usually

expensive agent-based solutions that already performed many of the tasks necessary for patch

management, such as asset and change management, that have since expended to include patch

management. The advantage they provide is that one agent canbe used for a variety of tasks

instead of managing several agents.

Package Managers Package management has traditionally been driven by the unix operat-

ing systems which have needed to develop systems to manage the large number of third party

software they require. Each operating system has its own package management system. Mi-

crosoft’s SUS and later incantation, WSUS [206] is essentially a package manager with some

extra functionality. Package managers have traditionallyonly focused on the patch inventory,

packaging and distribution, but become patch managers whenthey branch out to include some of

the other functionality described in section 5.2.1. Examples of this include Debian’s APT [70],

and RedHat’s RPM [173] systems.

CHAPTER 5. PRACTICAL SOLUTIONS 117

Original Patch Managers This class of software describes tools that have been recently devel-

oped with the original intention of fulfilling the needs of patch management. It is not surprising

that this is the largest category of patch management tools.Some examples include UpdateEx-

pert, Patchlink Update [207], BigFix [208] and Ecora Patch Manager [209].

5.2.3.2 Examples

Some examples of each type of product are given below.

• Vulnerability Scanner

– GFI Languard [202]

• Configuration Managers

– IBM Tivoli [204]

• Package Manager

– Debian APT [70]
– FreeBSD Ports [210]
– Microsoft WSUS [206]

• Original Patch Managers

– BigFix [208]

– Patchlink Update [207]

A table indicating which of the broad functionality areas each product fulfils is provided in

table 5.3. The quality and depth of the implementation is notrepresented. The feature set of

each category is made somewhat more clear, but in general many of the patch management

tools automate similar functionality. All of the tools implemented patch notification, but Tivoli

was the only one to correlate information from threat sensors. Tivoli provided almost all the

functionality of the other products, nicely demonstratingthe scope of configuration management

tools. All of the tools apart from the package managers provide vulnerability scanning, however

CHAPTER 5. PRACTICAL SOLUTIONS 118

BigFix and Patchlink do this with third-party tools such as Nessus that they integrate with their

product, while Tivoli and GFI appear to provide their own scanners. Vulnerability scanners

are available for WSUS, Apt and Ports based system, but they are not integrated into the tool.

Similarly reporting tools and host databases are availablefor Apt and Ports, but are not integrated.

BigFix, Patchlink, APT and Ports provide their own patches after testing patches released by

other vendors, while WSUS is a vendor specific tool. GFI and Tivoli use the vendor patches as

they are released. BigFix’s and Patchlink’s patches are available through a pay-for-subscription

service. It is interesting to note, that none of the tools provide support for automating testing.

Some allow for a ’test’ group to be created and patches deployed to them, however this does not

provide any functionality actually help with the testing.

We can see that there are still opportunities to develop the functionality of patch management

tools.

Notification Inventory

Management

Vulnerability

Scanner

Testing Packaging Distribution Reporting

Possible Values (P, V, T) (H, P, V) (Y | N | TP) (Y | N) (Y | N) (Y | N) (Y | N)

Tivoli P, T H, P, V Y N N Y Y

BigFix P H, P TP N Y Y Y

Patchlink P H, P TP N Y Y Y

GFI P, V H, P, V Y N N Y Y

WSUS P H, P N N Y Y Y

Apt P P N N Y Y N

Ports P P N N Y Y N

Key
• H - Host

• P - Patch

• T - Threat

• V - Vulnerability

• TP - Third Party

• Y - Yes

• N - No

• (a, b) - a and b

• (a | b) - a or b

Table 5.3: Comparison of Patch Management Tool Functionality

CHAPTER 5. PRACTICAL SOLUTIONS 119

5.3 Defence in Depth

Defence in depth is a security strategy pioneered by the military where multiple layers of security

are used to minimise the amount of damage caused by an intrusion [30]. In a broader context

it refers to every aspect of information security where a combination of people and technology

are used to form the multiple layers. In the context of patching it will be used to refer to ad-

ditional techniques that can be used to mitigate the threatsfaced by machines with unpatched

vulnerabilities. While testing occurs the organisation isleft vulnerable and is often in a situation

where it cannot turn off a critical service. Here additionaltechnologies designed to reduce the

effectiveness of an attack or at least to allow for the attackto be discovered can be utilised to

minimise the consequences of a successful exploit.

5.3.1 Firewalls and Anti-Virus

Firewalls and anti-virus solutions are a well understood solution to some attacks. However alone

they are often fairly inadequate. In section 1.3 the failings of firewalls were described. The rise

in use of web-based applications and the multiplexing of several services over the HTTP port

means that a firewall is only useful in certain select circumstances. A firewall should be deployed

however, and ports for commonly attacked services such as Windows RPC or OpenSSH should

be firewalled off if possible. Additionally, services only required by a select group of people,

for example firewall management interfaces, should limit the machines allowed to connect to the

port. If a port can be completely firewalled off, then questions as to whether the service is needed

at all should be raised.

Anti-virus solutions can help to mitigate attacks. Given their near ubiquitous deployment on all

end-user machines, they can help to combat the rise in malicious software that relies on con-

fidence tricks and minimal user interaction to spread. Keeping signatures up-to-date can help

to prevent against known malicious software attacks. However, anti-virus solutions that reply

solely on signature based detection are becoming less effective. Statistics provided by the mal-

ware submission service, VirusTotal consistently show significantly more failures in detection

that successes [211]. For example statistic for seven days in December 2005 showed 261 suc-

cessful detections compared to 14 285 failures. Often malware variants can be rapidly created

and discreetly spread, making it difficult for malware analysts to discover and analyse each piece

of malicious software rapidly. Additional techniques suchas heuristics and policy controls can

CHAPTER 5. PRACTICAL SOLUTIONS 120

help to catch new forms of malicious behaviour [212], by detecting many of the results used by

malicious software, instead of the specific technique. For example detecting if a browser tries to

execute code stored in a data segment assigned to a picture could pick up on any new malware

that attempts to use this technique. Thus, when a patch is being tested, signatures for potential

attacks can be distributed to client machines to provide short term protection against the threat.

In some cases the anti-virus solution can be effectively coupled with a proxy to provide some

protection from the crunchy firewall problem [40] in the formof content filters, an example of

such a tool is WebMarshal [213]. With the rise of processing power it is likely possible that many

more application specific proxies for services multiplexedover HTTP will become available.

Both the use of firewalls and anti-virus software is stronglyrecommended. While they will not

provide absolute protection, they can sometimes completely block a threat and or minimise it.

5.3.2 Intrusion Detection/Prevention Systems

There are both host and network IDS solutions. The focus hereis on network Intrusion Detec-

tion Systems (IDS) to mitigate attacks conducted over the internet. Intrusion detection systems

(IDS) operate in a similar manner to anti-virus solutions. Usually a set of signatures are used to

detect signs of malicious activity or heuristic and policy controls are used to detect new attacks.

Currently signatures are the most commonly used method of detection given the difficulty in

determining ’regular’ use of diverse network protocols. These signatures will be used to look for

patterns in network traffic and alert when they are discovered. However, IDSs have a notoriously

high rate of false positives [214] and can require extensivetuning to provide an accurate report-

ing rate. IDS signatures are easy to create, usually only consisting of a few lines of information,

and are often available very soon after the detection of a malicious application. The simplicity

of the signatures means that they can be rapidly tuned to lower the false positive rate. Similar

to anti-virus solutions, when a patch is being tested the signature can be used to monitor for any

attacks.

An IDS can be turned into an Intrusion Prevention System (IPS) by integrating it with a firewall

to block traffic detected as malicious. This could be extended to drop all traffic from hosts

detected to have sent malicious traffic. This should be used cautiously as malicious traffic could

be sent from a spoofed address potentially causing traffic from a legitimate host to be dropped,

effectively causing a Denial of Service attack [46]. However, in the short term with careful

CHAPTER 5. PRACTICAL SOLUTIONS 121

monitoring this can provide an effective tool to minimise the chance of a threat successfully

exploiting an unpatched vulnerability.

An extension of IDS systems are block lists [215]. These are lists of addresses known to be

involved in malicious activity. They can be used to limit thenumber of attacks from know bad

sources. However, block lists are easily circumvented by moving an attack to a new host. Given

the large number of zombie machines theorised to be compromised by attackers, this is often

fairly trivial. However, in the case of web-based threats where specific sites are distributing

malicious content, they can be of use.

5.3.2.1 Virtual Patching

Some vendors are marketing a defence in depth tool providing’virtual patching’. Most notably

BlueLane Technology’s PatchPoint solution [216]. The basic working of the technology appears

to be that of an IPS with the additional feature of being able to ’correct’ traffic. This amounts to

stripping out the known bad part of malicious network activity and forwarding it down the wire.

While the marketing hype promises this as a final solution to the woes of stop-gap defences

during patch testing, we believe these claims to be false. Correcting traffic is a two step process.

First malicious traffic must be detected, then it must be corrected. This is the exact process used

by an IPS, where first malicious traffic is detected and the ’correction’ is a total block of the

request. Thus, the only difference between ’virtual patching’ and an IPS is the additional step

of trying to correct the traffic. This is arguably a bad approach. The fallibility of signatures

has already been mentioned. A signature only provides detection for known bad activity. Even

in the case of known-bad activity this can be a difficult task.For example during the recent

WMF vulnerability, malicious WMF files were made difficult todetect through the use of gzip

compression and header padding tricks [217]. Thus, a malicious request may have more to it

than a signature can detect, and a good strategy is to block the entire request if part of it has been

discovered as malicious. Trying to correct the request and forwarding it is similar to going to

the effort of detecting know criminals, then removing theirvisible weapons and letting them into

your jewelry store. Ptacek [218] provides a nice quotation on the matter:

If your in-line network security device claims to provide "virtual patching", the

box must use the actual binary patch from [the vendor] to do it.

CHAPTER 5. PRACTICAL SOLUTIONS 122

5.3.3 Other Hardening

There are a plethora of other defence in depth steps that can be taken to harden the configuration

of a machine and its services. Some examples include host based IDS, cryptographically signed

executables, router white lists to limit worm infections and configuration hardening. This is a

broad area with he potential for much innovation that can be leveraged to extend the defence in

depth concept to buy an administrator more time to test patches.

5.3.4 Software Selection

Given that patch management will become a significant and regular activity if properly imple-

mented, minimising the number of patches required by deployed software will be of both a

security and cost benefit. By making good choices when software is first being deployed, high

maintenance and patch costs can be avoided later when the cost of migrating away from the soft-

ware is too high. Some software is patched more than others. Unfortunately, it is not as simple

as figuring out which software has less patches, as this is no indication of actual security. Older,

more mature software, will often have a larger user base and acorrespondingly large support

community which often results in more people finding vulnerabilities, and due to its popularity,

more people looking for vulnerabilities. This may result inmore patches being released, making

it appear poorly coded, but be objectively more secure than anew software project that fulfils the

same functionality but, which has not had the same level of security review.

An organisation then has two choices, the first is which software package should be used in the

face of multiple products. The organisation should conducta security review of each product,

this review should be more in depth than counting the number of patches and vulnerabilities

announced for each product. If possible the types of vulnerabilities, frequency of serious vul-

nerabilities and patch response time should be included. Once this decision is made there is a

choice between which version of the software should be used,this choice is less frequently made

as most organisations deploy the latest version, however this is not always the best choice. It is

hypothesised that older software that fulfils all necessarybusiness and technical requirements and

is still actively maintained2 will have less announced vulnerabilitiesand will, in fact, be more

2Actively maintained within acceptable limits. For exampleMicrosoft Windows 98 was until June 2006 still
being maintained, but not officially and patches were released slowly, placing it outside the definition of ’activley
maintained’.

CHAPTER 5. PRACTICAL SOLUTIONS 123

secure. To test this, vulnerability data for the Linux kernel was collected from the Common

Vulnerabilities and Exposures List [5] and analysed. The results seen in table 5.4 and figure 5.2

demonstrate that older kernel versions have less vulnerabilities over time, and hence less patches

to fix those vulnerabilities, than their newer counterparts. This is due to three primary reasons:

• There is less functionality and code with potential security holes.

• Older software has been subject to more and longer security review

• There is less interest in discovering vulnerabilities in older software

Year

Kernel Version 1999 2000 2001 2002 2003 2004 2005

2.2 3 4 17 2 1 0 3

2.4 n/a 1 6 5 12 30 11

2.6 n/a n/a n/a n/a 2 33 35

Total 4 6 19 7 15 50 40

Table 5.4: Table depicting vulnerabilities in the different Linux kernel versions over time

Source: CVE [5]

Note: The total columns do not add up correctly as some vulnerabilities affect multiple kernel versions or non-

standard kernel patches. For example in 2004 there were 13 vulnerabilities which overlapped and in 2000 one

vulnerability was in the trustees kernel patch and in 1999 one vulnerability was in the 2.0 kernel version which isn’t

included. These are included in the total to provide an idea of the general reporting trends in the linux kernel.

Thus, if and older software version is still being security maintained (within acceptable limits)

and provides all required functionality, it is often betterto use the older version over the newer

version as this will reduce the number of patches required without adversely affecting security.

This analysis is specific to a well known project with a large user and developer base, such as

the popular operating systems and server software (e.g. Linux, Windows, Apache). However,

this behaviour is not intrinsic and summaries of vulnerability numbers is not a replacement for a

through analyses.

CHAPTER 5. PRACTICAL SOLUTIONS 124

Figure 5.2: Graph of the number of vulnerabilities in different Linux kernel versions per
year.
Source: CVE [5]

5.4 Conclusion

This chapter has focused on the technical aspects of patch management. First a description of the

functional areas where a patch management policy can benefitfrom automation were identified.

A brief discussion on each of these aspects was provided pointing out where specific technologies

could be used to improve on current patching tools. After this a brief analysis of some existing

patch management tools was conducted. With the functionality and capabilities model developed

in the beginning of the chapter, we were able to asses existing patch management tools and

found that while some provided invaluable automation, a variety of tools is still required with

no solution providing the ’silver bullet’. This chapter further concluded that only a subset of a

patch management policy can be automated, but that this automation is necessary to the task.

In addition, there is still room for much technical improvement in automated patching tools,

particularly in providing tools to make testing patches easier. After this some additional technical

discussion focusing on other activities and technologies that can be used to improve the patching

process. Some defence in depth techniques were discussed that could allow an administrator

to deploy stop-gap defences while a patch was being tested. These defences are not always

CHAPTER 5. PRACTICAL SOLUTIONS 125

completely effective, but can help minimise some threats.

This chapter provided a description of actual tools that canbe used in assisting with patch man-

agement thus bringing us to the end of the analysis of this thesis. In the next chapter brief

summaries and conclusions are provided for each previous chapter.

Chapter 6

Conclusion

6.1 Introduction

In the introduction to this thesis the objectives of this research were put forward. This researcher

believes that these objectives have been mostly fulfilled. This chapter provides a summary of the

work that has been presented, with a focus on how the described objectives were achieved. Hind-

sight allows for a clearer perception of the activities undertaken during the period of research and

some of the problems encountered are discussed. Finally, further work that has been identified

as useful is discussed.

6.2 Objectives

Several objectives were discussed in chapter 1. It was hopedthat some sense could be brought

to the patch management debate. This sense is sorely needed given the growth of security as

an industry and patch management in particular, where vendors have a commercial interest in

hyping threats and products. To this end, seven objectives were proposed, they are repeated here:

1. An analysis of vulnerabilities, exploits and patches by discussing the vulnerability life-

cycle.

126

CHAPTER 6. CONCLUSION 127

2. An analysis of vulnerability, exploit and attack trends.

3. An analysis of patches and their problems.

4. A discussion on how to implement a patch management policy.

5. A discussion on how vendors can implement a scheduled patch release policy.

6. A discussion on patch management tools and automating parts of the policy.

7. Tools to help automate and integrate parts of the policy.

Barring the last, it is believed that these objectives have been achieved. The first objective was

dealt with in section 2.2 where the conclusions of several sources based on their analysis of

empirical evidence were synthesised to produce the most complete understanding of the current

vulnerability life-cycle that this researcher is aware of.The second objective utilised this new

understanding to discuss the trends that are currently modifying this life-cycle. In section 2.3,

several trends were demonstrated indicating that the risksrelated to vulnerabilities in software.

The number of vulnerabilities are increasing, the number ofattacks are increasing and the amount

of time available to an administrator to remediate these vulnerabilities is decreasing. This analy-

sis fulfilled the second objective and provided a justification as to whypatchesare necessary and

need to be expediently deployed.

The third objective was to analyse why patches appeared to bedifficult to manage and install. In

section 2.4 several specific problems that face administrators when deploying patches were dis-

cussed. Two examples were then provided in section 2.4.6 where several of these problems were

demonstrated. This objective provided a justification as towhy patch managementis necessary.

The fourth objective was to use the understanding gleaned from the information gathered in

meeting the previous objectives and derive a solution. Originally this objective consisted of a

stronger form of objective seven, and it was naively believed that a software tool could effectively

manage the problems relating to patch management. However,it was modified to its current state

in chapter 3, where an in-depth discussion is provided on howan organisation can develop a

patch management policy. In a drastic shift from the original objective, this discussion remained

technology agnostic and focused on the procedures that could be employed. In section 3.2.3.2 an

introduction to risk assessment was provided. This was found to be the single most useful part

of the derived policy. It was discovered that the largest problem facing patch management was a

CHAPTER 6. CONCLUSION 128

lack of information with which to asses risks. The risk assessment discussed influenced the rest

of the research greatly.

The fifth objective came about due to the shift of some vendorsto a scheduled patch release cycle

and the threat of this cycle becoming an industry standard. Microsoft in particular drove much

of the inquiry into patch schedules. With the context of the vulnerability life-cycle described in

the earlier chapters, it was clear that an end-user policy only dealt with part of the group relevant

to patch management, and that vendors could make a significant difference to any efforts. Thus,

in chapter 4 an argumentative analysis of scheduled patch release policies was given. It was

concluded that a patch schedule only works in a situation of delayed disclosure. In the case

of instantaneous disclosure described in section 4.3.3.1,vendor’s should release beta-patches

and benefit from community collaboration and testing which will result in effective vulnerability

remediation being available sooner.

The sixth objective went through several iterations beforeit was met in its final state. Some

confusion as to how to relate the functionality of an ideal patch management tool to the policy

proposed earlier existed. This confusions was overcome anda discussion on how parts of the

patch management policy could be automated was provided in section 5.2.1. This was then used

to classify a subset of current patch management tools in section 5.2.3 demonstrating that patch

management tools don’t support every necessary step in a patch management policy. In the next

section (5.3) the net was cast a bit further and a discussion on defence in depth tools that could be

used to defend the organisation while patches were being tested was provided. This completed

the solution objectives to the problems discovered in objectives one to three.

The need for integration of several management areas and information sources in a patch manage-

ment policy is critical. It was hoped that tools could be developed to help provide the automation

described in the previous objective. However, a lack of timeand scope prevented this from being

achieved. This will be further discussed in the ’future work’ section below.

6.2.1 Summary

Thus, it is believed that the objectives were met. The problem and its nuances were discerned

and solutions that responded to and mitigated these problems were developed.

CHAPTER 6. CONCLUSION 129

6.3 Problems and Solutions

The specific problem this research tried to address was to findworkable solutions to the problems

presented by patch management. Specifically, the problem was that of vulnerability manage-

ment: in the face of increasing threats and vulnerabilitieshow can patches be used to effectively

remediate these vulnerabilities to render the threats moot. The related problem was that of the

patch paradox, where without a patch an asset is vulnerable to attack, and with a patch the asset

is vulnerable to failure.

The developed solution presented in chapter 3 was to producea realistically implementable pol-

icy guide with which organisations could develop their own comprehensive patch management

policies. This policy took into account the many variables present in both vulnerability/attack

scenarios and present in the average organisation. Often and administrator has to deploy patches

to many machines with diverse requirements that can have complex effects on business pro-

cesses. The policy focused on risk management in section 3.2.3.2 as a method for directing

decision making. The second part of the solution presented in chapter 4 was less direct, but

involved a discussion of how vendors could implement a scheduled patch release policy that re-

sponded to the threat trends discovered, better integratedwith organisation patch management

policies and most importantly reduced the likelihood of exploitation to the end-user.

6.4 Future Work

There were many aspects of this work that could be branched off into a thesis of their own.

For example, several anti-virus companies make their moneyby focusing solely on virus-threat

notification and mitigation which were but small sub-components of this discussion. Some of

the work related to this subject which could be undertaken inthe future are discussed below.

6.4.1 Threat Management

Chapter 2 found it very difficult to gain an accurate picture of current threats, or provide com-

prehensive threat management resources. It is very difficult to discern current threat activity.

Most threats mentioned are those that are attacking on a verylarge scale, where the scale of the

CHAPTER 6. CONCLUSION 130

attack is directly related to its amount of coverage. However, a small scale targeted attack could

potentially do more damage to an organisation. Tool to provide better real-time threat report-

ing and correlation from public threat monitors such as dark-nets, internet telescopes, honeypots

and vendor sensor networks are very important in gaining an accurate picture of current threats.

Extending these to include data from local sensors such as IDS and Firewall logs to provide an

organisation-scale view of threats would also help to get anaccurate picture of attack activity.

An example current project is Symantec’s DeepSight analyser [190], which provides both an

internet wide and organisation wide view of threat activity.

6.4.2 Vulnerability Detail and Trend Tracking

Current vulnerability information is targeted at providing information on an individual vulner-

ability. Trend data can provide some valuable insight. For example, information on the dates

vulnerabilities were first reported to vendors could provide an understanding of how fast vendors

are at providing patches, and provide more empirical evidence for some of the claims in chapter

4. It would also allow vendors to be compared, and possibly motivated to patch faster. More

advanced information such as code-level granularity allowing description of the vulnerable func-

tion or the type of vulnerability, instead of just the vulnerable version of the software product can

be used to look for consistent security errors providing insight for developers looking to secure

their products.

6.4.3 Optimal Time to Patch for Large Vendors

In section 3.2.3.3 the optimal time to patch for a group of vulnerabilities that involved many

vendors was worked out. Beattieet al. [2] called for further research into the optimal time

to patch for individual vendors. This would give organisations a better idea of how they could

minimise the risks from patches. This would integrate will with the vulnerability detail research

described above, as calculating the optimal time to patch requires information on when and how

often a patch was recalled. This research could help in patchscheduling decisions, choosing

between different vendor’s products and motivating vendors to improve their patches.

CHAPTER 6. CONCLUSION 131

6.4.4 Patch Standards

Currently patches are implemented in several forms, usually specific to an operating system or

deployment platform. One of the problems highlighted throughout this work was the existence

of multiple patch deployment mechanisms. This is less of a problem on open source platforms

as most package management tools were developed to include awide range of software, how-

ever on Microsoft’s platforms it is problematic. Currentlythere exists XML schemas to describe

vulnerabilities, most notably VuXML [188] and OVAL [191]. Providing a similar CVE [51]

compatible standard description for patches would allow for an standard patch deployment ap-

plications to be built and used. This would need to decoupledwith a standard patch packaging

format. Given that many of the tasks of a package manager are well understood, dependency

tracking, reverse dependencies, roll-back etc. a cross-platform deployment mechanism could be

developed. This could decouple patch deployment from specific patch deployment tools. This

would ease patch testing for multiple platforms and distribution and reduce the redundant testing

performed by many groups, particularly in the open-source world. A patch could be developed

by Red-Hat and rolled out on a Debian machine with minimal modification.

6.5 Final Word

Patching is a problem that will be with us for a while. However, the current discussions around

patching generally revolve around the simple tasks of patchmanagement. It is hoped that this

thesis has managed to broaden this discussion, but not unnecessarily so. Some of these issues

raised are problems that run right through the information security field, such as threat report-

ing and change management. The largest conclusion which canbe drawn from this research is

that there is no simple solution to the problems of patch management, to realistically implement

a comprehensive and effective patch management policy would take some larger organisations

several years. However, some dependencies of such an implementation have not been effectively

fulfilled either, for example our knowledge of threats is still very poor. Additionally, the profit

motive of many security vendors still has them bowing to the wrong pressures and it is unlikely

that they would change overnight, especially with some still calling themselves ’Unbreakable’.

Solutions to the problems of patch management will take timebefore they can be easily imple-

mented.

CHAPTER 6. CONCLUSION 132

However, this is the work of a small group, and much more discussion, argument and debate

is required to find workable solutions to the problems that face each unique instantiation of a

patch administrator. The bar of information security debate must be raised above the noise of

vendor marketing and threat hype so that meaningful discussion can be had at every level of

security management. It is our hope that this thesis has nudged the bar a little higher, however

it is the continued efforts of the many dedicated security professionals tirelessly analysing and

responding to events that has been most notably impressive.The power of a community cannot

be denied and there are many ways in which you as the communitycan contribute. Open-source

security projects and communities such as Snort [215]or ClamAV [219], open database projects

such as OVAL [191] or OSVDB [183] or volunteer organisationssuch as the ISC [55] all make

a difference and require your help.

References

[1] Schneier, Bruce.Full Disclosure and the Window of Exposure. Crypto-Gram Newsletter

(September 15, 2000).

Available at:http://www.schneier.com/crypto-gram-0009.html\#1

[2] Beattie, Steve; Arnold, Seth; Cowan, Crispin; Wagle, Perry; Wright, Chris and Shostack,

Adam. Timing the Application of Security Patches for Optimal Uptime. In LISA ’02:

Proceedings of the 16th USENIX conference on System administration, pages 233–242.

USENIX Association, Berkeley, CA, USA (2002).

Available at: http://www.usenix.org/publications/library/proceedings/lisa02/tech/full_papers/

beattie/beattie_html/

[3] Whitaker, Steve; Fish, Barry and Sands, Carl.Solaris Patch Management: Recommended

Strategy. Technical report, Sun Microsystems (February 2005).

Available at:http://www.sun.com/blueprints/0205/819-1002.pdf

[4] Rescorla, Eric.Is Finding Security Holes a Good Idea?In IEEE Security and Privacy,

volume 3, no. 1: pages 14–19 (2005). ISSN 1540-7993. doi:http://dx.doi.org/10.1109/

MSP.2005.17.

[5] CERT/CC Common Vulnerabilities and Exposures. Website (jun 2005).

Available at:http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel

[6] Office of Information and Communications Technology.Information Security Guideline

for NSW Government Part 1 Information Security Risk Management. Technical report,

New South Wales Department of Commerce (June 2003).

Available at:http://www.oit.nsw.gov.au/pdf/4.4.16.IS1.pdf

[7] Eschelbeck, Gerhard.The Laws of Vulnerabilities. In Black Hat Briefings(edited by Jeff

Moss). Black Hat, Inc, 2606 Second Avenue, 406, Seattle, WA 98121 USA (July 2003).

133

REFERENCES 134

[8] Eschelbeck, Gerhard.The Laws of Vulnerabilities 2005. Qualys Research & Development

(2005).

Available at:http://www.qualys.com/research/rnd/vulnlaws/

[9] Eschelbeck, Gerhard.The Laws of Vulnerabilities. In Black Hat Briefings(edited by

Jeff Moss). Black Hat, Inc, 2606 Second Avenue, 406, Seattle, WA 98121 USA (March

2004).

Available at: http://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-pdfs/

bh-jp-04-eschelbeck.pdf

[10] Dumbill, Edd. The Next 50 Years of Computer Security: An Interview with Alan Cox.

O’Reilly Network, Interview (September 12, 2005).

Available at:http://www.oreillynet.com/pub/a/network/2005/09/12/alan-cox.html

[11] Weaver, Nicholas C.Warhol Worms: The Potential for Very Fast Internet Plagues. In

(2001).

Available at:http://www.iwar.org.uk/comsec/resources/worms/warhol-worm.html

[12] Poulsen, Kevin.Nachi worm infected Diebold ATMs. Security Focus - Columnist (Novem-

ber 24, 2003).

Available at:http://www.securityfocus.com/news/7517

[13] Harding, Luke.Court hears how teenage introvert created devastating computer virus in

his bedroom. The Guardian Newspaper (July 6, 2005).

Available at:http://www.guardian.co.uk/germany/article/0,2763,1522192,00.html

[14] Thomas, Daniel.Are our critical systems safe from cyber attack?vunet.com News (April

21, 2005).

Available at:http://www.vnunet.com/computing/analysis/2142496/critical-systems-safe-cyber

[15] Glave, James.Crackers: We Stole Nuke Data. Wired News (June 6, 1998).

Available at:http://www.wired.com/news/technology/0,1282,12717,00.html

[16] Sophos Security Threat Management Report 2005. Technical report, SOPHOS Inc. (De-

cember 6, 2005).

Available at:http://www.sophos.com/virusinfo/whitepapers/SophosSecurity2005-mmuk.pdf

[17] Danchev, Dancho.Malware - future trends. In (January 9, 2006).

Available at:http://www.packetstormsecurity.org/papers/general/malware-trends.pdf

REFERENCES 135

[18] holy_father@phreaker.net.Hacker Defender Antidetection Service. Product Description

(December 2005).

Available at:http://hxdef.czweb.org/about.php

[19] Eckelberry, Alex.Massive identity theft ring. Sunbelt Software Blog (August 4, 2005).

Available at:http://sunbeltblog.blogspot.com/2005/08/massive-identity-theft-ring.html

[20] Salusky, William.Mitgleider Hell. SANS Internet Storm Center Handler’s Diary (October

3, 2005).

Available at:http://isc.sans.org/diary.php?storyid=722

[21] ’Mafiaboy’ hacker jailed. BBC News (September 13, 2001).

Available at:http://news.bbc.co.uk/1/hi/sci/tech/1541252.stm

[22] Current Malware Threats and Mitigation Strategies. Technical report, US-CERT (May

16, 2005).

Available at: http://www.cscic.state.ny.us/msisac/webcasts/05_05/info/mal_%20thrt_mit\

_strat.pdf

[23] 386BSD + LINIX + GNU + X11R5 on CDROM - let us know what you want!USENET

(December 1, 1992).

Available at: http://groups.google.com/group/comp.unix.bsd/browse_thread/thread/

134942a64ef36f5e/8d03067120d4f2bf

[24] When will HP supply PATCHES before they are Required?USENET (November 17,

1992).

Available at: http://groups.google.com/group/comp.sys.hp/browse_thread/thread/

e065debcf70b5ec0/5cd814ab642863ce

[25] Top 10 Admin problems on Suns?USENET (February 27, 1992).

Available at: http://groups.google.com/group/comp.sys.sun.admin/browse_thread/thread/

921af6e2129df23c/5f95293a20a34f19

[26] Wall, Larry. Patch version 1.3. USENET (May 24, 1985).

Available at: http://groups.google.com/group/mod.sources/browse_thread/thread/

c5240ceb77b7f586/488b0929254d936a

[27] Bashar, Mohd A.; Krishnan, Ganesh; Kuhn, Markus G.; Spafford, E. H. and Jr, S.

S. Wagstaff.Low Threat Security Patches and Tools. In IEEE Computer Society(1997).

REFERENCES 136

CSD-TR-96-075; COAST TR 97-10.

Available at: https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/97-10.

pdf

[28] Eichin, Marchk W. and Rochlis, Jon A.An Analysis of the Internet Virus of Novemberem-

ber 1988. In IEEE Symposium on Research in Security and Privacy(1989).

Available at:http://web.mit.edu/eichin/www/virus/main.html

[29] Bejtlich, Richard.Miscategorizes Threats. Blog Entry (July 8, 2005).

Available at: http://taosecurity.blogspot.com/2005/07/cool-site-unfortunately-miscategorizes.

html

[30] US Army Information Assurance Division.Army Regulation 25-2. Glossary (November

14, 2003).

Available at:http://ia.gordon.army.mil/iaso/Army/AR25-2/main.htm\#term

[31] Office of Cyber Security & Critical Infrastructure Coordination.National Webcast Initia-

tive, Cyber Security Risk Assessment Webcast, Glossary of Terms. Glossary (August 26,

2004).

Available at: http://www.cscic.state.ny.us/msisac/webcasts/8_04/info/804_webcast_glossary.

htm

[32] Stoneburner, Gary; Goguen, Alice and Feringa, Alexis.Risk Management Guide for In-

formation Technology Systems. Technical report, National Institute of Standards (NIST),

Computer Security Division, Information Technology Laboratory, National Institute of

Standards and Technology, Gaithersburg, MD 20899-8930 (July 2002). Special Publica-

tion 800-30.

Available at:http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

[33] The Security Risk Management Guide. Technical report, Microsoft (October 15, 2004).

Available at: http://www.microsoft.com/technet/security/topics/policiesandprocedures/secrisk/

default.mspx

[34] Bejtlich, Richard. Personal Communication (December11, 2005).

[35] Guideline for Management of IT Security-Part 1: Concepts and Models for IT security.

Technical report, ISO/IEC (1996).

REFERENCES 137

[36] Definition: Patch. The Jargon File.

Available at:http://www.catb.org/~esr/jargon/html/P/patch.html

[37] Oracle9i Database Administrator’s Guide. Product Guide (April 23, 2002).

Available at:http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96521/dba.htm\#13284

[38] Analysis of the Witty Worm. Technical report, LURHQ (March 20, 2004).

Available at:http://www.lurhq.com/witty.html

[39] Berinato, Scott.Patch and Pray. In CSO Online(August 2003).

Available at:http://www.csoonline.com/read/080103/patch.html

[40] Cheswick, Bill.The Design of a Secure Internet Gateway. In Proceedings of the USENIX

Summer 1990 Conference, pages 233–237. Anaheim, CA (June 11-15, 1990).

Available at:http://research.lumeta.com/ches/papers/gateway.ps

[41] Mann, Charles.Interview with Bruce Schneier. The Atlantic News, Interview (September

2002).

Available at:http://www.theatlantic.com/doc/prem/200209/mann

[42] Dekker, Marcel. The Froehlich/Kent Encyclopedia of Telecommunications, volume 15.

New York (1997).

Available at:http://www.cert.org/encyc_article/tocencyc.html\#History

[43] Arbaugh, William A.; Fithen, William L. and McHugh, John. Windows of Vulnerability:

A Case Study Analysis. In Computer, volume 33, no. 12: pages 52–59 (2000). ISSN

0018-9162. doi:http://dx.doi.org/10.1109/2.889093.

[44] Browne, Hilary K.; Arbaugh, William A.; McHugh, John and Fithen, William L.A Trend

Analysis of Exploitations. In SP ’01: Proceedings of the 2001 IEEE Symposium on Secu-

rity and Privacy, page 214. IEEE Computer Society, Washington, DC, USA (2001).

Available at:http://www.securityfocus.com/data/library/CS-TR-4200.pdf

[45] Dacey, Robert F.GAO-03-1138T: Effective Patch Management is Critical to Mitigat-

ing Software Vulnerabilities. Technical report, United States General Accounting Office

(Septmember 10, 2003). Testimony Before the Subcommittee on Technology Information

Policy, Intergovernmental Relations, and the Census, House Committee on Government

Reform.

Available at:http://www.gao.gov/cgi-bin/getrpt?GAO-03-1138T

REFERENCES 138

[46] Mell, Peter; Bergeron, Tiffany and Henning, David.Creating a Patch and Vulnerability

Management Program. Technical report, National Institute of Standards (NIST), Com-

puter Security Division, Information Technology Laboratory, National Institute of Stan-

dards and Technology, Gaithersburg, MD 20899-8930 (November 2005). Special Publi-

cation 800-40 ver. 2.

Available at:http://csrc.nist.gov/publications/nistpubs/800-40/sp800-40.pdf

[47] Panko, Ray.Human Error Website. Research Website (April 1, 2005).

Available at:http://panko.cba.hawaii.edu/HumanErr/

[48] Bernstein, D. J.The qmail security guarantee. Website (May 29, 2005).

Available at:http://cr.yp.to/qmail/guarantee.html

[49] Ellis, James; Fisher, David; Longstaff, Thomas; Pesante, Linda and Pethia, Richard.Re-

port to the President’s Commission on Critical Infrastructure Protection. Technical report,

CERT R© Coordination Center, Software Engineering Institute, Carnegie Mellon Univer-

sity, Pittsburgh, Pennsylvania (January 1997).

Available at:http://www.cert.org/pres_comm/cert.rpcci.body.html

[50] CERT/CC Statistics 1988-2005. CERT/CC Website (January 2005).

Available at:http://www.cert.org/stats/cert_stats.html

[51] Statistics Query Page. National Vulnerability Database Website (December 2005).

Available at:http://nvd.nist.gov/statistics.cfm

[52] All Secunia Security Advisories 2003-2005. Secunia Website (December 2005).

Available at:http://secunia.com/graph/?type=all\&graph=adv

[53] Houle, Kevin and Weaver, George.Trends in Denial of Service Attack Technology. In

(October 2001).

Available at:http://www.cert.org/archive/pdf/DoS_trends.pdf

[54] Howard, John D.An Analysis Of Security Incidents On The Internet, 1989 - 1995. Ph.D.

thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 USA (April 7, 1997).

Available at:http://www.cert.org/research/JHThesis/Chapter12.html

[55] DShield - Distributed Intrusion Detection System, The Internet’s Early Warning System

and Internet Security community site. Product Website.

Available at:http://www.dshield.org/

REFERENCES 139

[56] Moore, David; Voelker, Geoffrey M. and Savage, Stefan.Inferring Internet Denial-of-

Service Activity. In Proceedings of the 10th USENIX Security Symposium. Washington,

D.C., USA (August 2001).

Available at:http://www.usenix.org/publications/library/proceedings/sec01/moore.html

[57] Yegneswaran, Vinod; Barford, Paul and Ullrich, Johannes. Internet intrusions: global

characteristics and prevalence. In SIGMETRICS ’03: Proceedings of the 2003 ACM SIG-

METRICS international conference on Measurement and modeling of computer systems,

pages 138–147. ACM Press, New York, NY, USA (2003). ISBN 1-58113-664-1. doi:

http://doi.acm.org/10.1145/781027.781045.

[58] Survival Time History. SANS Website (December 2005).

Available at:http://isc.sans.org/survivalhistory.php

[59] Overview of Attack Trends. Technical report, CERT/CC (October, 11 2005).

Available at:http://www.cert.org/archive/pdf/attack_trends.pdf

[60] Kaminsky, Dan.Scanrand Dissected: A New Breed of Network Scanner. Technical report,

LURHQ Threat Intelligence Group.

Available at:http://www.lurhq.com/scanrand.html

[61] Jontz, Sandra.Navy, Marines Block Commercial Email Sites. Military.com News (October

19, 2005).

Available at:http://www.military.com/NewsContent/0,13319,78905,00.html

[62] Turner, Dean; Entwisle, Stephen; Friedrichs, Oliver;Ahmad, David; Hanson, Daniel;

Fossi, Marc; Gordon, Sarah; Szor, Peter; Chien, Eric; Cowings, David; Morss, Dylan and

Bradley, Brad.Symantec Internet Security Threat Report: Trends for July 04-December

04. Technical report, Symantec (March 2005). Volume VII.

Available at:http://ses.symantec.com/pdf/ThreatReportVII.pdf

[63] Eschelbeck, Gerhard.Security Vulnerabilities, Exploits and Patches. Creativematch On-

line Magazine (May 3, 2005).

Available at:http://www.creativematch.co.uk/viewnews/?90970

[64] Sancho, David.The Future of Bot Worms: What we can expect from worm authors in the

coming months. Technical report, Trend Micro (2005).

Available at: http://www.trendmicro.com/NR/rdonlyres/B612D246-283C-444C-8A92-B0AC6782A2D1/

17115/Future_of_Bots_FINAL.pdf

REFERENCES 140

[65] Miller, Charles. Expanding Exposure: The Decreasing Time Between Web Application

Vulnerability and Exploitation. OWASP Papers Program (November 11, 2005).

Available at:http://www.owasp.org/docroot/owasp/misc/webapp-oswap.doc

[66] Long, Johnny.Goggledork Database.

Available at:http://johnny.ihackstuff.com/

[67] Flake, Halvar.SABRE BinDiff. Product Website (June 26, 2005).

Available at:http://www.sabre-security.com/products/bindiff.html

[68] Rescorla, Eric.Security holes... Who cares?In Proceedings of the 12th USENIX Security

Symposium, pages 75–90 (August 2003).

Available at:http://www.rtfm.com/upgrade.pdf

[69] Software Installation and Maintenance. Microsoft TechNet.

Available at: http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/

featusability/inmnwp.mspx

[70] Basics of the Debian package management system. The Debian GNU/Linux FAQ

(September 14, 2005). Maintained by Javier Fernandez-Sanguino.

Available at:http://www.debian.org/doc/FAQ/ch-pkg_basics

[71] Vulnerability in Graphics Rendering Engine Could Allow Remote Code Execution

(912919). Microsoft Security Bulletin (January 5, 2006).

Available at:http://www.microsoft.com/technet/security/bulletin/ms06-001.mspx

[72] ANELKAOS. Gmail Bug. Vulnerability Advisory (October 2005).

Available at:http://www.elhacker.net/gmailbug/english_version.htm

[73] All Vulnerabilities discovered through ChangeLog entries. Open Source Vulnerability

Database.

Available at:http://www.osvdb.org/searchdb.php?text=ChangeLog

[74] Genuine Microsoft Software. Vendor Website.

Available at:http://www.microsoft.com/genuine/default.mspx?displaylang=en

[75] OracleMetaLink. Vendor Website.

Available at:https://metalink.oracle.com/

REFERENCES 141

[76] SunSolve Online. Vendor Website.

Available at:http://sunsolve.sun.com/

[77] Buffer Overruns in SQL Server 2000 Resolution Service CouldEnable Code Execution

(Q323875). Microsoft Security Bulletin (July 24, 2002).

Available at:http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx

[78] Moore, David; Paxson, Vern; Savage, Stefan; Shannon, Colleen; Staniford, Stuart and

Weaver, Nicholas.The spread of the Sapphire/Slammer worm. Technical report, The

Cooperative Association for Internet Data Analysis (CAIDA) (February 2003).

Available at:http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html

[79] Cumulative Patch for SQL Server (Q316333). Microsoft Security Bulletin (August 14,

2002).

Available at:http://www.microsoft.com/technet/security/bulletin/ms02-043.mspx

[80] Cumulative Patch for SQL Server (Q316333). Microsoft Security Bulletin (October 2,

2002).

Available at:http://www.microsoft.com/technet/security/bulletin/ms02-056.mspx

[81] Elevation of Privilege in SQL Server Web Tasks (Q316333). Microsoft Security Bulletin

(October 16, 2002).

Available at:http://www.microsoft.com/technet/security/bulletin/ms02-061.mspx

[82] FIX: Handle Leak Occurs in SQL Server When Service or Application Repeatedly Con-

nects and Disconnects with Shared Memory Network Library. Microsoft Security Bulletin

(October 30, 2005).

Available at:http://support.microsoft.com/default.aspx?scid=kb;en-us;317748

[83] Cooper, Russ.Confusion about versions. NTBugTraq Mailinglist (January 28, 2003).

Available at:http://archives.neohapsis.com/archives/ntbugtraq/2003-q1/0045.html

[84] Thurrott, Paul.Microsoft Releases SQL Server 2000 SP3. WindowsITPro News (January

23, 2003).

Available at:http://www.windowsitpro.com/Article/ArticleID/37800/37800.html

[85] Compatibility and Resource Guide. Technical report, Best Software (July 7, 2004).

Available at:http://www.blytheco.com/pdf/bes/misc/MAS500CompatibilityGuide63.doc

REFERENCES 142

[86] Roberts, Paul.Microsoft Slammed by Its Own Vulnerability. IDG News Service (January

28, 2003).

Available at:http://www.pcworld.com/news/article/0,aid,109043,00.asp

[87] Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution (833987). Mi-

crosoft Security Bulletin (September 14, 2004).

Available at:http://www.microsoft.com/technet/security/bulletin/ms04-028.mspx

[88] Hyppönen, Mikko.Be careful with WMF files. F-Secure Anti-Virus Weblog (December

28, 2005).

Available at:http://www.f-secure.com/weblog/archives/archive-122005.html\#00000753

[89] All About GDI+. Technical report, Microsoft.

Available at:http://msdn.microsoft.com/security/gdiplus/default.aspx

[90] Liston, Tom.GDI Scan. Internet Storm Centre (October 2, 2004).

Available at:http://isc.sans.org/gdiscan.php

[91] Chan, Jason.Essentials of Patch Management Policy and Practice. @stake (January

2004).

Available at:http://www.patchmanagement.org/pmessentials.asp

[92] British Standard/International Standard Organization.BS/ISO 17799 Information technol-

ogy – Code of practice for information security management(2000).

[93] MacLeod, Kenneth J.Patch Management and the Need for Metrics. In (July 14, 2004).

SANS Security Essentials GSEC Practical Assignment.

Available at:http://www.sans.org/rr/whitepapers/bestprac/1461.php

[94] Voldal, Daniel.A Practical Methodology for Implementing a Patch management Process.

In (September 26, 2003).

Available at:http://www.sans.org/rr/whitepapers/bestprac/1206.php

[95] White, Dominic and Irwin, Barry.A Unified Architecture for Automatic Software Updates.

In Proceedings of Information Security South Africa 2004(June 2004).

Available at:http://www.cs.ru.ac.za/research/students/g00w1690/files/issa2004.pdf

[96] Swanson, Marianne.Guide for Developing Security Plans for Information Technology

Systems. Technical report, National Institute of Standards (NIST), Computer Security

REFERENCES 143

Division, Information Technology Laboratory, National Institute of Standards and Tech-

nology, Gaithersburg, MD 20899-8930 (December 1998). Special Publication 800-18,

Federal Computer Security Program Managers’ Forum WorkingGroup.

Available at:http://csrc.nist.gov/publications/nistpubs/800-18/Planguide.PDF

[97] Carothers, Tony.Port 1025/6000 Action (Part III). Internet Storm Centre Handler’s Diary

(December 11, 2005).

Available at:http://isc.sans.org/diary.php?storyid=926

[98] Kohen, Javier and Rizzo, Juliano.DCE RPC Vulnerabilities New Attack Vectors Analysis.

Technical report, Core Security Technologies (December 9, 2003).

Available at:http://www.coresecurity.com/common/showdoc.php?idx=393\&idxseccion=10

[99] Vulnerabilities in MSDTC and COM+ Could Allow Remote Code Execution (902400).

Microsoft Security Bulletin (October 11, 2005).

Available at:http://www.microsoft.com/technet/security/Bulletin/MS05-051.mspx

[100] Gregg, Michael.CISSP Exam Cram 2. Que (September 22, 2005). ISBN 078973446X.

[101] Bradley, Tony.Critical Elements For Patch Testing Policies. In (June 17, 2005). Vol. 27,

Issue 24.

Available at: http://www.processor.com/editorial/article.asp?article=articles%2Fp2724%2F22p24%

2F22p24%2Easp\&guid=8BF8F1B9C3044EDDB8172AF340C1667C\&searchtype=0\&WordList=

[102] VMWare. VMWare Virtualisation Software. Vendor Website (June 26, 2006).

Available at:http://www.vmware.com/

[103] Pratt, Ian.The Xen virtual machine monitor. Project Website (April 13, 2006).

Available at:http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[104] Microsoft. Microsoft Virtual PC 2004. Vendor Website (June 26, 2006).

Available at:http://www.microsoft.com/windows/virtualpc/default.mspx

[105] Microsoft. Microsoft Virtual Server 2005 R2. Vendor Website (June 26, 2006).

Available at:http://www.microsoft.com/windowsserversystem/virtualserver/default.mspx

[106] Shaw, Yun. Patch Management in Oracle Applications Release 11i. Technical report,

Oracle Corporation (May 2005).

Available at:http://whitepapers.zdnet.co.uk/0,39025945,60143559p-39000388q,00.htm

REFERENCES 144

[107] Windows Update Services Deployment White Paper. Technical report, Microsoft (Novem-

berember 2004).

Available at:http://www.microsoft.com/windowsserversystem/wus/deployment.mspx

[108] Thompson, Ken.Reflections on trusting trust. In Communications of the ACM, volume 27,

no. 8 (August 1984).

[109] Dunagan, John; Roussev, Roussi; Daniels, Brad; Johson, Aaron; Verbowski, Chad and

Wang, Yi-Min. Towards a Self-Managing Software Patching Process Using Black-Box

Persistent-State Manifests. In Proceedings of IEEE International Conference on Auto-

nomic Computing (ICAC). Institute of Electrical and Electronics Engineers, Inc. (March

2004).

Available at:http://research.microsoft.com/research/pubs/view.aspx?tr_id=726

[110] Sun, Yizhan and Couch, Alva.Global Impact Analysis of Dynamic Library Dependencies.

In Proceedings of the 2001 Large Installation System Administration Conference(LISA01)

(USENIX Association: Berkeley, CA), page 145 (December 3, 2001).

Available at:http://www.usenix.org/publications/library/proceedings/lisa2001/tech/sun.html

[111] White, Dominic and Irwin, Barry.Patching for Low Bandwidth Communities. In Pro-

ceedings of Southern African Telecommunication Networks &Applications Conference

(September 11, 2005).

Available at: http://www.cs.ru.ac.za/research/students/g00w1690/files/satnac2005/

patchingbandwidth.pdf

[112] Cumulative Security Update for Internet Explorer (896727). Microsoft Security Bulletin

(August 9, 2005).

Available at:http://www.microsoft.com/technet/security/Bulletin/MS05-038.mspx

[113] Keizer, Gregg.Microsoft Initially Released Corrupted IE Patch. TechWeb News (August

10, 2005).

Available at:http://techweb.com/wire/security/168600527

[114] Vulnerability disclosure publications and discussion tracking. University of Oulu, Elec-

trical and Information Engineering Department (May 10, 2005).

Available at:http://www.ee.oulu.fi/research/ouspg/sage/disclosure-tracking/

REFERENCES 145

[115] McMillan, Robert. Adobe Adopts Monthly Patch Cycle. IDG News Service (December

15, 2005).

Available at:http://www.theregister.co.uk/2005/12/15/adobe_monthly_patch_plan/

[116] Emigh, Jacqueline.Users Weigh In on Oracle’s Patch Plan. eWeek.com News (August

23, 2004).

Available at:http://www.eweek.com/article2/0,1895,1638797,00.asp

[117] Livingston, Brian. Microsoft’s Patch-A-Month Club. eWeek.com News (November 3,

2003).

Available at:http://www.eweek.com/article2/0,1895,1490665,00.asp

[118] Bott, Ed.Patches: Once a month is not enough. Ed Bott’s Microsoft Report Blog (March

24, 2006).

Available at:http://blogs.zdnet.com/Bott/?p=23

[119] Lemos, Robert.Microsoft releases monthly security fixes. CNET News.com (October 15,

2003).

Available at: http://news.com.com/Microsoft+releases+monthly+security+fixes/2100-7355\

_3-5091835.html

[120] Pruitt, Scarlet.Oracle moves to monthly patching schedule. IDG News Service (August

20, 2004).

Available at:http://www.computerworld.com/securitytopics/security/story/0,10801,95388,00.html

[121] Evers, Joris.Oracle to deliver security patches on quarterly basis. IDG News Service

(November 18, 2004).

Available at:http://www.infoworld.com/article/04/11/18/HNoraclepatchquarterly_1.html

[122] Litchfield, David.Opinion: Complete failure of Oracle security response and utter neglect

of their responsibility to their customers. BugTraq Mailing list (January 6, 2005).

Available at:http://seclists.org/lists/bugtraq/2005/Oct/0056.html

[123] Mogull, Rich.Flaws Show Need to Update Oracle Product Management Practices. Tech-

nical report, Gartner (January 23, 2006).

Available at:http://www.gartner.com/DisplayDocument?ref=g_search\&id=488567

REFERENCES 146

[124] Fisher, Dennis.Changing Patch Habits With Microsoft. eWeek.com News (December 6,

2004).

Available at:http://www.eweek.com/article2/0,1895,1735542,00.asp

[125] Farrow, Rik.The Pros and Cons of Posting Vulnerabilities. IT Architect (May 10, 2005).

Available at:http://www.itarchitect.com/shared/article/showArticle.jhtml?articleId=8702916

[126] Arora, Ashish; Telang, Rahul and Xu, Hao.Optimal Policy for Software Vulnerability

Disclosure. In Workshop on Economics and Information Security(May 2004).

Available at:http://www.heinz.cmu.edu/~rtelang/disclosure_finalMS_IS.pdf

[127] Arora, Ashish; Krishnan, Ramayya; Nandkumar, Anand;Telang, Rahul and Yang, Yubao.

Impact of Vulnerability Disclosure and Patch Availability- An Empirical Analysis. In

Third Annual Workshop on Economics and Information Security WEIS04(April 2004).

Available at:http://www.heinz.cmu.edu/~rtelang/disclosure_finalMS_IS.pdf

[128] Rauch, Jeremy.The Future of Vulnerability Disclosure?In ;login: the USENIX Associa-

tion Newsletter, volume 11 (December 8, 1999).

Available at:http://www.usenix.org/publications/login/1999-11/features/disclosure.html

[129] Schneier, Bruce.Cisco Harasses Security Researcher. CryptoGram Newsletter (July 29,

2005).

Available at:http://www.schneier.com/blog/archives/2005/07/cisco_harasses.html

[130] Rain Forest Puppy.Full Disclosure Policy (RFPolicy) v2.0. Unofficial Policy (September

8, 2004).

Available at:http://www.wiretrip.net/rfp/policy.html

[131] OIS Guidelines for Security Vulnerability Reporting and Response, V2.0. Technical report,

Organisation for Internet Safety (September 17, 2004).

Available at:http://www.oisafety.org/guidelines/secresp.html

[132] Cooper, Russ.NTBugtraq Disclosure Policy. Technical report, NTBugTraq (July 26,

1999).

Available at:http://www.ntbugtraq.com/default.aspx?sid=1\&pid=47\&aid=48

[133] CERT/CC Vulnerability Disclosure Policy. Technical report, CERT/CC (October 9,

2000).

Available at:http://www.cert.org/kb/vul_disclosure.html

REFERENCES 147

[134] Laakso, Marko; Takanen, Ari and Roning, Juha.Introducing constructive vulnerability

disclosures. In (2001).

Available at:http://www.ee.oulu.fi/research/ouspg/protos/sota/FIRST2001-disclosures/paper.pdf

[135] Arora, Ashish; Krishnan, Ramayya; Telang, Rahul and Yang, Yubao.An Empirical Anal-

ysis of Vendor Response to Disclosure Policy. In The Fourth Annual Workshop on Eco-

nomics and Information Security WEIS05(March 2004).

Available at:http://infosecon.net/workshop/pdf/41.pdf

[136] Handling Mozilla Security Bugs. Technical report, Mozilla Foundation (February 11,

2003).

Available at:http://www.mozilla.org/projects/security/security-bugs-policy.html

[137] Kean, Kevin.Updated Advisory: WMF Vulnerability. Microsoft Security Response Centre

(January 2006).

Available at:http://blogs.technet.com/msrc/archive/2006/01/03/416809.aspx

[138] Ford, Heather. An open invitation to culture-jamming with Laugh It Off. Creative

Commons South Africa News (March 2005).

Available at: http://za.creativecommons.org/blog/archives/2005/03/18/

an-open-invitation-to-culture-jamming-with-laugh-it-off/

[139] Havrilla, Jeffrey S. and Dormann, Will.Vulnerability Note VU#181038 Microsoft Win-

dows Metafile handler SETABORTPROC GDI Escape vulnerability. Technical report,

US-CERT (January 20, 2006).

Available at:http://www.kb.cert.org/vuls/id/181038

[140] Anonymous.Is this a new exploit?BugTraq Mailinglist (December 27, 2005).

Available at:http://archives.neohapsis.com/archives/bugtraq/2005-12/0305.html

[141] Exploit-WMF. McAfee Virus Information Library (January 5, 2006).

Available at:http://vil.mcafeesecurity.com/vil/content/vi_137760.htm

[142] Bleeding Snort Current Events WMF Exploit Signature. Bleeding Snort Current Events

CVS Signature Repository (February 7, 2006).

Available at: http://www.bleedingsnort.com/cgi-bin/viewcvs.cgi/sigs/CURRENT_EVENTS/CURRENT\

_WMF_Exploit

REFERENCES 148

[143] Carboni, Chris.Update on Windows WMF 0-day. SANS Internet Storm Centre Handler’s

Diary (December 29, 2005).

Available at:http://isc.sans.org/diary.php?storyid=975

[144] Wesemann, Daniel.The most hated IP address of 2005 ?SANS Internet Storm Centre

Handler’s Diary (December 28, 2005).

Available at:http://isc.sans.org/diary.php?storyid=974

[145] Serino, Jim.RE: [Full-disclosure] Someone wasted a nice bug on spyware... BugTraq

Mailinglist (December 28, 2005).

Available at:http://archives.neohapsis.com/archives/bugtraq/2005-12/0320.html

[146] Guilfanov, Ilfak.Windows WMF Metafile Vulnerability HotFix. Hex Blog (December 31,

2005).

Available at:http://www.hexblog.com/2005/12/wmf_vuln.html

[147] Frantzen, Swa.New exploit released for the WMF vulnerability. SANS Internet Storm

Centre Handler’s Diary (January 1, 2006).

Available at:http://isc.sans.org/diary.php?storyid=992

[148] Ullrich, Johannes.Recommended Block List. SANS Internet Storm Centre Handler’s

Diary (January 2, 2006).

Available at:http://isc.sans.org/diary.php?storyid=997

[149] Sachs, Marcus.Installing a Patch Silently. SANS Internet Storm Centre Handler’s Diary

(January 2, 2006).

Available at:http://isc.sans.org/diary.php?storyid=1004

[150] Sachs, Marcus.Scripting the Unofficial .wmf Patch. SANS Internet Storm Centre Han-

dler’s Diary (January 2, 2006).

Available at:http://isc.sans.org/diary.php?storyid=1008

[151] Sachs, Marcus.Checking for .wmf vulnerabilities. SANS Internet Storm Centre Handler’s

Diary (January 2, 2006).

Available at:http://isc.sans.org/diary.php?storyid=1006

[152] Guilfanov, Ilfak.WMF Vulnerability Checker. Hex Blog (January 1, 2006).

Available at:http://www.hexblog.com/2006/01/wmf_vulnerability_checker.html

REFERENCES 149

[153] Frantzen, Swa.WMF FAQ. SANS Internet Storm Centre Handler’s Diary (January 7,

2006).

Available at:http://isc.sans.org/diary.php?storyid=994

[154] Sachs, Marcus..wmf FAQ Translations. SANS Internet Storm Centre Handler’s Diary

(January 3, 2006).

Available at:http://isc.sans.org/diary.php?storyid=1005

[155] Liston, Tom.Updated version of Ilfak Guilfanov’s patch / ,msi file. SANS Internet Storm

Centre Handler’s Diary (January 1, 2006).

Available at:http://isc.sans.org/diary.php?storyid=999

[156] Hyppönen, Mikko. Hexblog.com overloaded. F-Secure Anti-Virus Weblog (January 4,

2006).

Available at:http://www.f-secure.com/weblog/archives/archive-012006.html\#00000767

[157] Reavey, Mike.WMF Vulnerability Security Update. Microsoft Security Response Centre

Blog (January 4, 2006).

Available at:http://blogs.technet.com/msrc/archive/2006/01/04/416847.aspx

[158] Nash, Mike. Mike Nash on the Security Update for the WMF Vulnerability. Microsoft

Security Response Centre Blog (January 5, 2006).

Available at:http://blogs.technet.com/msrc/archive/2006/01/05/416980.aspx

[159] Mook, Nate.US Govt. to Test Windows Patches Early. BetaNews (March 11, 2005).

Available at: http://www.betanews.com/article/US_Govt_to_Test_Windows_Patches_Early/

1110560071

[160] Nash, Mike. Mike Nash on the Security Update for the WMF Vulnerability. Microsoft

Security Response Centre (January 2006).

Available at:http://blogs.technet.com/msrc/archive/2006/01/05/416980.aspx

[161] Krebs, Brian.A Time to Patch. Washington Post’s Security Fix (January 11, 2006).

Available at:http://blogs.washingtonpost.com/securityfix/2006/01/a_timeline_of_m.html

[162] White, Dominic.Microsoft Patch Speed Inconsistencies. .tHE pRODUCT Weblog (Jan-

uary 13, 2006).

Available at: http://singe.rucus.net/blog/archives/687-Microsoft-Patch-Speed-Inconsistencies.

html

REFERENCES 150

[163] Haugsness, Kyle.Bofra/IFrame Exploits on More Web Sites (updated); IFRAME vulner-

ability summary; Two more IE Exploits. SANS Internet Storm Center Handler’s Diary

(November 20, 2004).

Available at:http://isc.sans.org/diary.php?date=2004-11-20

[164] Update for Microsoft Internet Explorer HTML Elements Vulnerability. Technical report,

US-CERT (December 3, 2004).

Available at:http://www.us-cert.gov/cas/techalerts/TA04-336A.html

[165] Frantzen, Swa.Black tuesday - the day after. SANS Internet Storm Center Handler’s

Diary (December 14, 2005).

Available at:http://isc.sans.org/diary.php?storyid=932

[166] Upcoming Advisories. eEye Digital Security (January 2006).

Available at:http://www.eeye.com/html/research/upcoming/

[167] de Beaupre, Adrien.Handler’s Diary. SANS Internet Storm Centre Handler’s Diary (July

12, 2005).

Available at:http://isc.sans.org/diary.php?date=2005-07-12

[168] Toulouse, Stephen.Microsoft presenting at the Black Hat security conference in Las

Vegas. Microsoft Security Response Centre Blog (June 9, 2006).

Available at:http://blogs.technet.com/msrc/archive/2006/06/09/434600.aspx

[169] Microsoft. Microsoft BlueHat Security Briefings. TechNet Security (March 8, 2006).

Available at:http://www.microsoft.com/technet/security/bluehat/sessions/default.mspx

[170] Vaas, Lisa. Oracle’s Silence on Database Security Wearing Thin. eWeek.com News

(August 17, 2004).

Available at:http://www.eweek.com/article2/0,1895,1637079,00.asp

[171] Vaas, Lisa.Security Firm: Oracle Opatch Leaves Firms Uncovered. eWeek.com News

(August 22, 2005).

Available at:http://www.eweek.com/article2/0,1895,1850287,00.asp

[172] Mozilla Foundation Awards Bug Bounties. Mozilla Foundation News (March 28, 2005).

Available at:http://www.mozilla.org/press/mozilla-2005-03-28.html

[173] RPM Guide. The Fedora Project (November 11, 2005).

Available at:http://fedora.redhat.com/docs/drafts/rpm-guide-en/ch-intro-rpm.html

REFERENCES 151

[174] Debian Documentation Team.A Brief History of Debian. Debian Foundation (August 10,

2005).

Available at:http://www.debian.org/doc/manuals/project-history/ch-releases.en.html

[175] Bartoletti, Tony; Dobbs, Lauri A. and Kelley, Marcey.Secure Software Distribution Sys-

tem. Technical report, Computer Security Technology Center, Lawrence LivermoreNa-

tional Laboratory, PO Box 808 L-303 Livermore, CA 94551 (June 30, 1997).

Available at:http://ciac.llnl.gov/cstc/ssds/ssdswp.pdf

[176] Trusted Strategies.Patch Management Sector Report. Technical report, Trusted Strategies

(May 2004).

Available at:http://www.trustedstrategies.com/nl1/rnr.php

[177] Brynjolfsson, Erik and Hitt, Lorin.Computing Productivity: Firm-Level Evidence. In

MIT Sloan Working Paper No 4210-01(June 2003). doi:http://dx.doi.org/10.2139/ssrn.

290325.

Available at:http://ssrn.com/abstract=290325

[178] Patch Management Product Comparisons. PatchManagement.org (November 1, 2004).

Available at:http://www.patchmanagement.org/comparisons.asp

[179] Landesman, Mary.Security Patch Management: Breaking New Ground. Technical report,

Shavlik (2004).

Available at:http://www.shavlik.com/whitepapers/security_patch_management.pdf

[180] Nicolett, Mark and Colville, Ronni.Robust Patch Management Requires Specific Capa-

bilities. Research Note T-19-4570 (March, 2003).

[181] Furrow, Chris and Manzuik, Steve.Injecting Trojans via Patch Management Software

and Other Evil Deeds. In Black Hat Europe. Black Hat, Inc, 2606 Second Avenue, 406,

Seattle, WA 98121 USA (August, 2005).

Available at:http://www.blackhat.com/presentations/bh-europe-05/bh-eu-05-farrow.pdf

[182] NVD Download and Product Integration Page. National Vulnerability Database (January

2006).

Available at:http://nvd.nist.gov/download.cfm

[183] Open Source Vulnerability Database Search. OSVDB Website (December 2005).

Available at:http://osvdb.org/search.php

REFERENCES 152

[184] X-Force: Alerts and Advisories. Internet Security Systems (January 2006).

Available at:http://xforce.iss.net/xforce/alerts

[185] SecurityFocus: Vulnerabilities. SecurityFocus Vulnerability Database (January 2006).

Available at:http://www.securityfocus.com/vulnerabilities

[186] New Security Information. Microsoft Website (January 24, 2006).

Available at:http://www.microsoft.com/athome/security/rss/default.mspx

[187] Debian Foundation.Security Information. Debian Security Team Website (February 13,

2006).

Available at:http://www.debian.org/security/

[188] FreeBSD VuXML. Website (February 7, 2006).

Available at:http://www.vuxml.org/freebsd/

[189] SGUIL(tm) The Analyst Console for Network Security Monitoring. Website (2006).

Available at:http://sguil.sourceforge.net/

[190] DeepSight(tm) Analyser. Symantec Website (February 13, 2006).

Available at:http://analyzer.securityfocus.com/

[191] Open Vulnerability and Assesment Language OVAL(May 19, 2006).

Available at:http://oval.mitre.org/

[192] Open Vulnerability and Assesment Language OVAL - XML Schema(June 9, 2006).

Available at:http://oval.mitre.org/language/index.html

[193] McDonald, Josh (2005).

Available at:http://xdelta.blogspot.com/

[194] Percival, Colin. An Automated Binary Security Update System for FreeBSD. Master’s

thesis, Computing Lab, Oxford University, Oxford (2003).

Available at:http://www.daemonology.net/freebsd-update/binup.html

[195] Microsoft. Binary Delta Compression. Technical report(March, 2004).

Available at: http://www.microsoft.com/downloads/details.aspx?FamilyID=

4789196c-d60a-497c-ae89-101a3754bad6

REFERENCES 153

[196] Brennen, V. Alex.Strong Distribution HOWTO. Online HOWTO (April 1, 2003).

Available at:http://www.cryptnet.net/fdp/crypto/strong_distro.html

[197] Sohn, Tae-Shik; Moon, Jong-Sub; Lee, Cheol-Won; Im, Eul-Gyu and Seo, Jung-Taek.

Safe Patch Distribution Architecture in Intranet Environments. In Security and Manage-

ment, pages 455–460 (2003).

[198] Vulnerabilities in Operating System Patch Distribution. Technical report, BindView, No

Longer Available.

Available at:http://razor.bindview.com/publish/papers/os-patch.html

[199] Cohen, Bram.BitTorrent. Vendor Website (2004).

Available at:http://bitconjurer.org/BitTorrent/

[200] Cohen, Bram.Incentives Build Robustness in Bittorrent. Technical report(may 2003).

Available at:http://bitconjurer.org/BitTorrent/bittorrentecon.pdf

[201] Microsoft Corporation. Microsoft Baseline Security Analyser (MBSA) version 1.2.1is

available. Microsoft Website (July 7, 2005).

Available at:http://support.microsoft.com/default.aspx?kbid=320454

[202] GFI. GFI Languard: Security scanning and patch management. Vendor Website (June

26, 2006).

Available at:http://www.gfi.com/languard/

[203] Microsoft. Microsoft Systems Management Serve. Vendor Website (June 26, 2006).

Available at:http://www.microsoft.com/smserver/

[204] IBM. Tivoli Software. Vendor Website (June 26, 2006).

Available at:http://www.ibm.com/software/tivoli/

[205] Configuresoft.Configuresoft: Configuration Management & Compliance. Vendor Website

(June 26, 2006).

Available at:http://www.configuresoft.com/

[206] Microsoft Windows Update Service Home(2005).

Available at:http://www.microsoft.com/wsus/

REFERENCES 154

[207] Patchlink.Patchlink Update: #1 Patch Management Software for Securing the Enterprise.

Vendor Website (June 26, 2006).

Available at:http://www.patchlink.com/

[208] BigFix, Inc. BigFix Inc. Vulnerability Management. Vendor Website (June 26, 2006).

Available at:http://www.bigfix.com/

[209] Ecora. SECURITY COMPLIANCE & CONTROL MADE EASY. Vendor Website (June

26, 2006).

Available at:http://www.ecora.com/ecora/

[210] FreeBSD.About FreeBSD Ports. Project Website (June 26, 2006).

Available at:http://www.freebsd.org/ports/

[211] Failures in Detection (Last 7 Days). VirusTotal Website (February 13, 2006).

Available at:http://www.virustotal.com/flash/graficas/grafica4_en.html

[212] White, SR.Open Problems in Computer Virus Research. Technical report(1998).

Available at:http://www.research.ibm.com/antivirus/SciPapers/White/Problems/Problems.html

[213] Software, Marshal.WebMarshal Product Information. Vendor Website (June 26, 2006).

Available at:http://www.marshalsoftware.com/pages/webmarshal.asp

[214] Patton, S; Yurcik, W and Doss, D.An Achilles Heel in Signature-Based IDS: Squealing

False Positives in SNORT. In Proceedings of RAID 2001(2001).

Available at:http://mel.icious.net/ids/raid01.pdf

[215] Malware Prevention through black-hole DNS. Bleeding Snort Projects (March 3, 2005).

Available at:http://www.bleedingsnort.com/blackhole-dns/

[216] PatchPoint(tm) System. BlueLane Website (February 2006).

Available at:http://www.bluelane.com/

[217] Sachs, Marcus.More .wmf Woes. SANS Internet Storm Centre Handler’s Diary (January

2, 2006).

Available at:http://isc.sans.org/diary.php?storyid=1002

[218] Ptacek, Thomas. Thomas Ptacek’s Second Rule Of Security Marketing. Matasano

Security Weblog (November 21, 2005).

REFERENCES 155

Available at:http://www.sockpuppet.org/tqbf/log/2005/11/thomas-ptaceks-second-rule-of-security.

html

[219] Kojm, Tomasz.ClamAV: Project News. Project Website (June 26, 2006).

Available at:http://www.clamav.net/

[220] Foley, Mary Jo.Microsoft Delays By a Year Delivery of Two New Patching Systems(July

2004).

Available at:http://www.microsoft-watch.com/article2/0,1995,1656785,00.asp

[221] Microsoft Windows Update(2005).

Available at:http://www.windowsupdate.com/

[222] Windows Update Services Deployment White Paper. Technical report, Microsoft (Novem-

ber 2004).

Available at:http://www.microsoft.com/windowsserversystem/wus/deployment.mspx

[223] Zinman, Amit.Windows Update Services Review(November 2004).

Available at:http://www.windowsecurity.com/articles/Windows-Update-Services-Review.html

[224] Microsoft .NET Framework Version 1.1 Redistributable Package(March 2004).

Available at:http://go.microsoft.com/fwlink/?LinkId=9104

[225] Microsoft .NET Framework 1.1 Service Pack 1 for Windows Server 2003(August 2004).

Available at:http://go.microsoft.com/fwlink/?LinkId=35326

[226] Microsoft Windows Update Services BITS 2.0 beta for Windows2000 Server(November

2004).

Available at:http://www.microsoft.com/windowsserversystem/wus/betaeulaWin2k.mspx

[227] Microsoft Windows Update Services BITS 2.0 beta for WindowsServer 2003(November

2004).

Available at:http://www.microsoft.com/windowsserversystem/wus/betaeulaWin2003.mspx

[228] Download Internet Explorer 6 Service Pack 1(September 2002).

Available at:http://go.microsoft.com/fwlink/?LinkId=22355

[229] Microsoft SQL Server 2000 Desktop Engine (MSDE 2000) Release A(December 2004).

Available at:http://go.microsoft.com/fwlink/?LinkId=35713

REFERENCES 156

[230] Automatic Updates June 2002(June 2002).

Available at:http://go.microsoft.com/fwlink/?LinkId=22338

[231] Software Update Services Deployment White Paper. Technical report, Microsoft.

Available at:http://www.microsoft.com/windowsserversystem/sus/deployment.mspx

[232] Semilof, Margie.Microsoft taking steps to integrate WUS with Windows(March 2004).

Available at:http://searchwin2000.techtarget.com/qna/0,289202,sid1_gci956193,00.html

[233] Thurrott, Paul.What You Need to Know About Windows Update Services(April 2004).

Available at:http://www.windowsitpro.com/Windows/Article/ArticleID/41969/41969.html

[234] Microsoft. Description of the new features in the package installer forWindows software

updates. KB 832475(March 2005).

[235] Hoover, Ken.Ken’s SUS Scripts(June 2004).

Available at:http://pantheon.yale.edu/~kjh27/sus-scripts.html

[236] White, Dominic.SUS Reporting Tools(December 2004).

Available at:http://singe.rucus.net/sus/

Appendix A

Time-line of Notable Worms and Viruses

A.1 Introduction

While researching for this document much work was put into analysing past virii and worms.

This resulted in the formation of a Wikipedia article which has since been added to. The below

is a time-line of notable worms and viruses. This serves to place the oft discussed incidents into

a greater context.

A.2 Time-line

A.2.1 2006

• January 20th: The Nyxem worm was discovered. It spread by mass-mailing. Its payload,

which activates on the 3rd of every month, starting on February 3, attempts to disable

security-related and file sharing software, and destroy files of certain types, such as from

Microsoft Office.

A.2.2 2005

• August 16th: The Zotob Worm and several variations of malware exploiting the vulnera-

bility described in MS05-039 are discovered. The effect wasoverblown because several

157

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 158

United States media outlets were infected.

A.2.3 2004

• December 2004: Santy, the first known "webworm" is launched.It exploited a vulnera-

bility in PhpBB described in BID10701 and used Google in order to find new targets. It

infected around 40000 sites before Google filtered the search query used by the worm,

preventing it from spreading.

• May 1st: The Sasser worm emerges by exploiting a vulnerability in LSASS described in

MS04-011 and causes problems in networks, even interrupting business in some cases.

• March 19th: The Witty worm is a record-breaking worm in many regards. It exploited

holes in several Internet Security Systems (ISS) products.It was the fastest disclosure to

worm, it was the first internet worm to carry a destructive payload and it spread rapidly

using a pre-populated list of ground-zero hosts.

• Late January: MyDoom emerges, and currently holds the record for the fastest-spreading

mass mailer worm.

A.2.4 2003

• October 24th: The Sober worm is first seen and maintains its presence until 2005 with

many new variants.

The simultaneous attack of the Blaster and Sobig worms caused a massive amount of damage.

• August 19th: The Sobig worm (technically the Sobig.F worm) spread rapidly via mail and

network shares.

• August 18th: The Welchia (Nachi) worm is discovered. The worm tries to remove the

blaster worm and patch Windows.

• August 12th: The Blaster worm, also know as the Lovesan worm,spread rapidly by ex-

ploiting Microsoft Windows computers vulnerable to exploits first described in MS03-026

and later in MS03-039.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 159

• January 24th: The SQL slammer worm also known as the Sapphireworm, attacked vul-

nerabilities in Microsoft SQL Server and MSDE described in MS02-039 and MS02-061,

causes widespread problems on the Internet.

A.2.5 2001

• October 26th: The Klez worm is first identified.

• September 18th: The Nimda worm is discovered and spreads through a variety of means

including vulnerabilities described in MS01-044 and backdoors left by Code Red II and

Sadmind worm.

• August 4th: A complete re-write of the Code Red worm, Code RedII begins aggressively

spreading, primarily in China.

• July 13th: The Code Red worm attacking the Index Server ISAPIExtension in Microsoft’s

Internet Information Services with a vulnerability described in MS01-033, is released.

• July: The Sircam worm is released, spreading through e-mails and unprotected network

shares.

• May 8th: The Sadmind worm spreads by exploiting holes in bothSun Microsystem’s

Solaris (Security Bulletin 00191)and Microsoft’s Internet Information Services (MS00-

078).

• January: A worm strikingly similar to the Morris worm, namedthe Ramen worm infected

only Red Hat Linux machines running version 6.2 and 7, using three vulnerabilities in

wu-ftpd, rpc-statd and lpd respectively.

• May: The VBS/Loveletter worm, also known as the "I love you" virus appeared. As of

2004, this was the most costly virus to business, causing upwards of 10 billion dollars in

damage.

A.2.6 1999

• March 26th: The Melissa worm is released, targeting Microsoft Word and Outlook-based

systems, and creating considerable network traffic.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 160

A.2.7 1998

• June 2nd: The first version of the CIH virus appears.

A.2.8 1995

• The "Concept virus" the first Macro virus is created

A.2.9 1992

• Michelangelo predicted to create a digital armageddon on 6th of March, with millions of

computers having their information wiped, according to a mass media hysteria surrounding

the virus. Later assessments of the damage showed the aftermath to be minimal.

A.2.10 1989

• October 1989: Ghostball First multipartite virus discovered by Fridrik Skulason

A.2.11 1988

• November 2nd: The Morris worm, created by Robert Tappan Morris, infects DEC VAX

and SUN machines running BSD UNIX connected to the Internet,and becomes the first

worm to spread extensively "in the wild", and one of the first well-known programs ex-

ploiting buffer overrun vulnerabilities.

A.2.12 1987

• October: The Jerusalem virus is found in the city of Jerusalem, Israel. It is a destructive

virus programmed to destroy executable files on every occurrence of Friday the 13th.

• November: The SCA virus, a boot sector virus for Amigas appears, immediately creating a

pandemic virus-writer storm. A short time later, SCA releases another, considerably more

destructive virus, the Byte Bandit.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 161

A.2.13 1982

• A program called Elk Cloner, written for Apple II systems, iscredited with being the first

computer virus to appear "in the wild", i.e. outside the single computer or lab where it was

created.

Appendix B

Analysis of WSUS

B.1 Introduction

On November 16th 2004, Microsoft announced the availability of the Windows Update Service

(WUS) Beta. This date came half a year after Microsoft originally planned to release the ser-

vice[220]. Then four months later on March 22nd 2005, Microsoft announced a new release

candidate (RC) and a name change, WUS was to be called WSUS (Windows Server Update Ser-

vices), and on June 8th 2005, Microsoft released WSUS to manufacturing. Given the growth in

focus and solutions for patch management over the last year,the delays and changes are hardly

surprising. With the window from vulnerability announcement to exploit release rapidly dimin-

ishing, patching has become one of the essential tools on thefront-line of the security battle

grounds. Many organisations have been making do with Microsoft’s Software Update Service

(SUS) for the last year with many more still looking for a patch management solution. SUS was

seen as a quick-fix due to its limited nature, leaving more than one administrator with handfuls

of hair. Microsoft has provided Systems Management Server (SMS) for enterprise patch man-

agement and other administration, however the price is not always appropriate, particularly for

small to medium enterprises. It is hoped WSUS can address these issues.

This review will detail the experience with WSUS from installation to use. It will start with

an abridged description of WSUS’s installation and configuration and move onto a tour of its

abilities. The narrative then takes a turn for the technical, with the basic workings of WSUS

explained based on information gleaned from a live packet capture. The review is concluded

with a list of useful WSUS resources.

162

APPENDIX B. ANALYSIS OF WSUS 163

B.2 What’s New

WSUS introduces a number of new features, mostly due to the new back-end that Microsoft

has implemented, WSUS uses the same back-end technology as Microsoft’s Windows Update

service[221]. These new features are:

• Reporting Features. SUS provided no reporting at all, although the back-end implemented

it. This lead to administrators having to rely on third partytools to derive what was going

on in their organisation. WSUS provides a host of reporting features, partially fulfilling

this much needed customer request.

• More Updates. In addition to operating system updates, WSUSnow provides updates for

Office XP and 2003, Exchange and SQL server. It still only provides support for Microsoft

products and patches however.

• Update Filters. The administrative interface provides useful filter options to navigate the

thousands of updates.

• Target Grouping. Machines can now be placed into different groups allowing different

update approval options for each group. This is particularly useful for pushing patches to

a test lab before large scale deployment.

• Improved Distribution. WSUS now allows express updates which use binary patching to

push only those changes required (called deltas) rather than a whole file. It also supports an

improved topology making distributing updates across the organisation easier. Finally, the

download on demand feature can ensure that updates are only downloaded when necessary.

• Patch Options. WSUS now allows several new update approval options which enable

WSUS to optionally check if a update is required, install theupdate or remove the update.

WSUS also provides for automatic approval rules for specificupdates and target groups.

• Improved Update Options. The new version of the BITS (Background Intelligent Trans-

fer Service) includes new options which make installing updates on client machines less

intrusive and disruptive.

• New Back-end. WSUS now sports a new back-end finished off witha SQL database. With

the option of either SQL server or the free Microsoft DesktopEngine (MSDE).

APPENDIX B. ANALYSIS OF WSUS 164

• Secure Server Replication. Updates and configurations can be replicated between servers.

In addition SSL connections can be used in server to server and server to client connections.

B.3 Installation

Installing WSUS is fairly straightforward. Microsoft haveprovided a good description of the pro-

cess and its options in their WSUS deploy guide[222] along with a brief guide by WindowsSe-

curity.com[223]. Thus, this section will be fairly brief.

B.3.1 Topology

Before an installation an administrator should be aware of the topologies WSUS affords. With

the new grouping options and the ability to distribute WSUS servers, several different topologies

are possible. There are four basic models which can then be combined to form fairly complex

systems if necessary. There are three primary components used: Microsoft Update (MU), the

WSUS server and the WSUS clients, called Automatic Update(AU) clients.

B.3.1.1 Default

This is the ’normal’ way of doing things, with the WSUS serverreceiving its updates and meta-

data from Microsoft Update (in a process called synchronisation) and passing it on to its AU

clients. The meta-data contains extended information about the update, such as the licensing and

description, and can be separated from the actual update. See figure B.1.

B.3.1.2 Grouping

With WSUS’s new grouping feature allows AU clients to be grouped separately. Each group

can then have its own patch approval options. This is useful for testing, allowing patches to

be pushed to a test lab before being pushed to the AU clients ina production group. Grouping

does not allow for a machine to be part of, often requested, multiple groups, however this is

not a disadvantage as requiring this is usually indicative of a poor topology with the additional

complexities required to implement this prohibitive. See figure B.2.

APPENDIX B. ANALYSIS OF WSUS 165

Figure B.1: Default Topology

Figure B.2: Grouped Topology

APPENDIX B. ANALYSIS OF WSUS 166

Figure B.3: Chained Topology

B.3.1.3 Chaining

As with SUS, WSUS allows for a WSUS server to synchronise fromanother WSUS server

rather than Microsoft Update. This is useful for creating a distributed hierarchical environment.

Microsoft recommends that the hierarchy be no more than three levels deep, though they have

tested it with up to five levels[222]. With this model a downstream WSUS server will inherit the

approval and transfer setting of the upstream WSUS server. Such a topology can also be used as

a disconnected architecture where WSUS’s import/export update feature allows for updates to be

hand-carried via sneaker net1 from a connected WSUS server to a disconnected one.See figure

B.3.

B.3.1.4 Client Download

It is not always practical to download updates to the WSUS server for distribution. This is

particularly true in mobile environments where the AU clients proximity to the WSUS server is

1Manually delivering patches to each machine without a network.

APPENDIX B. ANALYSIS OF WSUS 167

Figure B.4: Client Download Topology

unknown. In such situations the WSUS server can be configuredto store only update meta-data.

This allows the WSUS server to retain control over update approval without needing to store or

distribute the updates themselves. The AU clients can then download the approved updates from

Microsoft Update.See figure B.4.

B.3.2 Requirements

WSUS requirements are fairly minimal and typical of the average server. The requirements are

described in more detail in the WSUS Deployment Guide[222].

Microsoft recommends a 1GHz machine for <500 AU clients and a2GHz machine for >500

AU clients. It should also have at least 1GB of RAM. WSUS requires either Windows Server

2003 or Windows 2000 Server with both requiring the .NET framework ver 1.1 SP1[224, 225],

BITS 2.0[226, 227] and IIS 6.0 and Windows 2000 Server requiring IE 6.0 SP 1[228]. Both

should have 30GB of an NTFS file system free for updates and 2GBfree for MSDE. Microsoft

recommends using SQL Server over MSDE with >500 AU clients. MSDE for Windows Server

2003 (now named Windows SQL Server 2000 Desktop Engine or WMSDE) is distributed with

the WSUS installer however Windows 2000 Server users will have to download it[229].

The automatic updates client has the same requirements as SUS and will only work on Windows

2000 with Service Pack 3 or later, Windows XP and Windows 2003. WSUS then uses SUS

to update the client to work with WSUS. However, this won’t work on Windows XP machines

without service packs installed, as it requires the SUS upgrade[230].

APPENDIX B. ANALYSIS OF WSUS 168

Figure B.5: WSUS Administrative Interface

B.3.3 Server

Server installation is facilitated by a wizard, which presents the user with three decisions: whether

to store updates locally or have clients fetch them from Microsoft Update, whether to install

MSDE or use an existing SQL database, and whether to use the default web site or create a new

WSUS site. ASP .NET 1.1 will be installed at the same time. Thewizard will also allow for an

upstream WSUS server to be configured, instead of connectingto Microsoft Update.

After a successful installation the WSUS administrative interface (see figure B.5) can be found

at http://server[:port]/WSUSAdmin/, where [port] will only be used if WSUS was

not installed to the default site, in which case the port willbe 8530.

APPENDIX B. ANALYSIS OF WSUS 169

B.3.4 Client

WSUS uses the automatic update (AU) client’s self-update feature to install the new AU client on

each machine. The client is first upgraded from the cab files found in \Selfupdate directory of the

web server. Once upgraded it installs the new Windows Installer 3.1, BITS 2.0 and WinHTTP

5.1 which are needed to support the new configuration optionsWSUS affords. Windows XP SP2

already has an updated automatic updates client but will still self update to the latest version. A

more technical description of this process can be found later in this document.

B.4 Configuration

WSUS configuration is similar to SUS configuration. The behaviour of the WSUS server is con-

trolled through the WSUS administrative interface (see figure B.5) while the behaviour of the AU

clients is handled through group policy or the registry. This section provides a brief introduction

to the various configuration settings available. Once againthis is documented in greater detail

in the WSUS deploy guide[222] with additional information available in the, currently, more

complete SUS deploy guide[231].

B.4.1 Server

Server configuration is done via the WSUS administration page (http://server[:port]/WSUSAdmin/)

(see figure B.6). Some options are shared with SUS and will notbe covered in detail.

The WSUS server can be configured to synchronise with either Microsoft Update or another

WSUS server, as discussed above. This requires informationsuch as the server and proxy details

and a schedule for how often the WSUS server should synchronise. The syntax for entering

an upstream server is http://servername[:port], with [:port] only used if the WSUS server is not

using port 80.

WSUS now supports updates for Office, Exchange and SQL Server, as compared to SUS which

had far fewer updates. Microsoft hopes to expand this to all of their products, and are looking

into methods for securely distributing third party updateswhile maintaining the distribution se-

curity of signed updates[232]. This requires that the products, for which WSUS should distribute

APPENDIX B. ANALYSIS OF WSUS 170

Figure B.6: WSUS Configuration

updates, be selected by adjusting the settings for which products, languages, and class of update

e.g. critical updates, security updates, service packs should be managed (see figure B.8). Given

the much increased number of updates there is an option to automatically approve certain classes

of updates(see figure B.7).

WSUS provides two methods for grouping computers. The first is server side targeting. This

allows an administrator to manually place machines that have contacted the WSUS server into

chosen groups. The second, more powerful, option allows theclients themselves to advertise

to be put in a certain group (see figure B.9). This setting is then controlled on the client either

through group policy or registry settings. In both cases an administrator needs to create the group

on the server.

The new distribution options afforded by WSUS allows for bandwidth consideration to be better

accounted for. Deferred updates allow meta-data to be downloaded separately from the update

files. This allows approvals to be disseminated and the update is only downloaded if required by

an AU client connected to the WSUS sever (or a downstream WSUSserver). Express installation

is Microsoft catching up to FreeBSD with binary patching. Itallows for deltas to be sent to the

AU clients. These deltas only contain information that should be changed within selected files

rather than a replacement for the entire file. Express installation does incur a cost in the form of

a large initial download from to the WSUS server, as a delta for each possible version of the files

needs to be distributed.

APPENDIX B. ANALYSIS OF WSUS 171

Figure B.7: Automatic Approval

APPENDIX B. ANALYSIS OF WSUS 172

Figure B.8: Product Update Selection

APPENDIX B. ANALYSIS OF WSUS 173

Figure B.9: Client-Side Computer Grouping

APPENDIX B. ANALYSIS OF WSUS 174

B.4.2 Client Side

The new background intelligent transfer service (BITS v2.0) and automatic update client allow

for several new configuration options on the client side (seefigure B.10). The addition of these

options appear to be Microsoft’s response to the criticism of the less flexible options previous

versions provided. In particular the fewer restarts and greater configurability should make the

process more pleasant for the desktop user. These options can be modified in several ways; active

directory group policy, local group policy or registry settings. These configuration methods are

referred to as administrative policies, which are distinctfrom the user’s configuration. A few of

the options are common to SUS, therefore the focus will be on the changes and new options.

Modifying these via group policy can be done by opening the group policy editor and navigating

to Computer Configuration/Administrative Templates/Windows Components/Windows Update,

after loading the windows update administrative template,wuau.adm (this will automatically be

upgraded if done previously with SUS). Modifying the settings via the registry requires that the

key HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\WindowsUpdate[\AU]be

edited.

There are new options related to how update notification are displayed. These notification can

occur either before downloading and installation, just before installation, or not at all. The first

option prevents the automatic update client’s user-interface from being locked when administra-

tive policies are used to configure the client. This allows a local administrator to choose their

own notification settings. The next allows for non-administrators to be included in the group of

users allowed to receive update notifications.

With the introduction of grouping, client-side targeting is a method where an AU client will

advertise which group it should be a member of, allowing clients to self-populate groups. Thus

there is an option to specify which group the AU client shouldrequest membership of.

WSUS now takes more advantage of the agent on the AU clients and utilises a periodic check

where an AU client will connect and allow the WSUS server to interrogate its patch status. This

option is specified in hours. The AU client will connect between the specified time and a 20%

offset. Thus if the option is 10 hours the AU client will connect every 8 to 10 hours.

A separation has been made between updates that require a restart and those than don’t. Non-

restarting updates can be installed immediately without notifying the relevant user, if the user

is configured to receive installation notifications. This allows the administrator to automatically

APPENDIX B. ANALYSIS OF WSUS 175

Figure B.10: New BITS Options

APPENDIX B. ANALYSIS OF WSUS 176

Figure B.11: Remove Access to Windows Update

install updates that don’t require a restart without disturbing the desktop user unless an update

requires a restart. This should reduce disruptions to the end user.

In the case of scheduled installations two new options have been provided. One allows a delay to

be inserted before continuing with a scheduled restart, andthe other allows the amount of time

before the user is re-prompted for a scheduled restart to be specified. Minor, but occasionally

useful changes.

The option to remove links and access to Windows Update was available in SUS (see figure

B.11), but is often overlooked and is therefore mentioned here. This will remove the link to

Windows Update in the start menu and will prevent non-approved updates being installed from

Windows Update. This setting can be found in the group policyeditor atComputer Configura-

tion/Administrative Templates/Start Menu and Taskbar.

In addition to administrative policies, the update client can be manipulated via the command

line. This is done by runningwuauclt.exewith command line switches. The two switches are:

/resetauthorizationwhich will delete the client side cookie, which normally expires after an

hour, and contains information such as the target group (more information on this can be found

APPENDIX B. ANALYSIS OF WSUS 177

in section B.7); and/detectnowwhich will force the AU client to connect to the WSUS server

and check for new approvals. When these switches are used together they must be used in the

order they were mentioned i.e.wuauclt.exe /resetauthorization /detectnow. This is particularly

useful for debugging machines and forcing an update.

B.5 Patching

The process of patching machines is done is six steps: synchronisation, approval, detection, dis-

tribution, installation, verification. This section will look at each step, and how WSUS supports

it.

B.5.1 Synchronisation

During synchronisation meta-data is downloaded from a central distribution point, in this case

Microsoft Update, and disseminated to other WSUS servers and AU clients. This process can

also download the updates to the server allowing AU clients to fetch them locally, if WSUS has

been configured to do so. WSUS uses BITS to transfer the meta-data and updates in the back-

ground and supports resuming the process if it is interrupted. The progress of a synchronisation

is displayed on the front page of the WSUS administrative interface (see figure B.5).

B.5.2 Approval

WSUS allows three types of approval to be applied to each update: detect only, install and remove

(see figure B.12). Currently no updates support the remove option, but will in the future as it is

a function of the new Windows Installer. The update’s approvals can apply to all machine’s or

one group. A group can also inherit its approvals from the global configuration. The interface is

far easier to use allowing updates to be filtered by product, classification, approval, date received

and by a text based search. The filtered updates can then be sorted by column.

APPENDIX B. ANALYSIS OF WSUS 178

Figure B.12: Update Approval

APPENDIX B. ANALYSIS OF WSUS 179

Figure B.13: Patch Status Detection

B.5.3 Detection

Periodically an AU client will connect to the server and provide a list of platform details, installed

updates, hardware and drivers. This is then used by the WSUS server to display which updates

are needed by the AU client and which have been successfully installed (see figure B.13). This is

particularly useful for determining the patch status of an organisation. The frequency with which

an AU client connects to the WSUS server is configured on the client (see B.4.2). This is also

where the AU client synchronises with its WSUS server.

APPENDIX B. ANALYSIS OF WSUS 180

B.5.4 Distribution

Updates are distributed over HTTP using the background intelligent transfer service (BITS),

which supports resuming of interrupted downloads and dynamic throttling of downloads to use

spare bandwidth. Updates can either be downloaded from a local WSUS server or Microsoft

Update depending on the topology (see section B.3.1). Distribution has been made more flexible

with the introduction of download on demand, where updates are only downloaded to the server

when needed, and express updates, which make use of binary patching (see section B.4.1).

B.5.5 Installation

Many of the patching improvements in WSUS are due to the new Windows Installer ver 3.

Microsoft has converged their many patching methods into two which are supported by the new

installer[233]. The new MSI packages will also support uninstallation of updates[233], hence the

new remove approval setting. In addition these packages will require less restarts and will support

binary patching[233], hence the introduction of express updates. Other powerful switches have

been added and more detail can be found from Microsoft[234].

B.5.6 Verification

An important part of any patch management solution is the ability to verify that the patch was

actually installed. In WSUS this is achieved through the same interface used for detection (see

figure B.13). The AU clients check in after installing updates and after a machine restart in which

updates are installed.

B.6 Reporting

The single largest problem with SUS was its complete lack of reporting. WSUS offers four

reports officially labelled as such (see figure B.14). The twomost useful are a breakdown of

updates or computers which allows an administrator to drilldown to see statistics for groups

and individual AU clients or updates(see figures B.15 and B.16). These reports can be filtered

APPENDIX B. ANALYSIS OF WSUS 181

Figure B.14: WSUS reports

by approval and groups, and can then be sorted by each column.This is not the only reporting

in WSUS as many other screens provide reporting features, such as the computer and update

screens (see figures B.13 and B.12). On the back-end all of theinformation is stored in a SQL

database, allowing ad-hoc queries to be address through third party tools (such as Microsoft

Systems Management Console). This is a great improvement over SUS, but many administrators

will probably require more.

B.7 Packet Capture

To get a better look at how WSUS does its work, Ethereal was used to perform a packet cap-

ture of the communications between an AU client and the WSUS server. This revealed several

improvements over SUS. Further, it demonstrated the working of WSUS which have not been

published in much detail as yet. The testing here was performed on a variety of WUS and WSUS

pre-releases and so some of the bugs may have been resolved.

B.7.1 Steps Performed

The relevant tasks performed during the packet capture were:

APPENDIX B. ANALYSIS OF WSUS 182

Figure B.15: Report by Computer

1. A new Windows XP SP1a AU client is joined to the active directory domain.

2. AU client self-updated.

3. The new AU client installs Windows Installer and BITS updates, required a restart.

4. Logged in with some automatic update activity. The loggedin administrator was not in-

formed, although the icon appeared briefly. A restart was required.

5. Logged in and 24 new updates were downloaded.

6. Updates were installed, restart was required.

7. WSUS server synchronised with Microsoft Update.

8. wuauclt.exe /detectnowwas run from command line on the AU client.

9. One critical update detected, downloaded and installed.

10. The same critical update was detected, downloaded and installed multiple times until ap-

proval was revoked on WSUS server.

APPENDIX B. ANALYSIS OF WSUS 183

Figure B.16: Report by Update

APPENDIX B. ANALYSIS OF WSUS 184

B.7.2 Resulting Network Traffic

By comparing the resulting packet capture to the steps performed above, the interactions between

the WSUS server and the AU client was discovered. Below is a chronological list of recorded

HTTP request traffic between the WSUS server and AU client, and its analysis.

• /iuident.cab - This stands for ’Industry Update Identification’ and is how the client’s ver-

sion is identified. This .cab file along with the rest below wastimestamped by Verisign and

signed by Microsoft. If this were the first communication of amachine with a WSUS AU

client rather than a SUS AU client (e.g. Windows XP with SP2) then these first three steps

are not seen and the traffic would start with a call to wuident.cab.

• Once it is determined that this is a SUS client, the self-update from point 2 of the above

section (B.7.1) is performed. The client is instructed to download the relevant .cab files

(starting with wacomp.cab which contain version information for the individual client files)

of the new automatic update client. In this client configuration the files were stored in

/selfupdate/au/x86/XP/en/ on the IIS server.

• /wutrack.bin - After the self update the client requests wutrack with a parametrised query

string. With SUS, the request of wutrack.bin was used for reporting and statistics on the

patch process. The parameters provide information on aspects of the clients behaviour,

including platform, activity and the KB of the patch being installed (more information can

be found on page 83 of the SUS deploy guide[231]). This methodis how third party SUS

reporting tools were developed (e.g. K. Hoover’s[235] or myD. White’s [236]). With

WSUS the item and activity parameters are not used but platform information is provided.

This was the only request to wutrack.bin seen in the whole capture and appears to be left

for backwards compatibility.

• /wuident.cab - This stands for Windows Update Identification and contains AU client ver-

sion information. This request includes a date stamp as a parameter.

• /wusetup.cab - This contains an .inf and .cat file which contain setup information, such as

dll version and registration information, for the new automatic update client. This request

also includes a date stamp as a parameter.

• From here the new automatic update client communicated withthe WSUS sever using

a SOAP based web service. The format used to describe the method calls is: [returned

information] MethodName (passed information)

APPENDIX B. ANALYSIS OF WSUS 185

– [config] GetConfig

– [auth cookie] GetAuthCookie

– [cookie] GetCookie (encrypted(auth cookie))

After this the returned cookie is encrypted and sent as the preamble to all future

transactions. This cookie will contain information such asthe target group of the AU

client and expires after an hour.

– RegisterComputer (a SOAP XML file is passed with the full platform information)

– [required update ID’s] SyncUpdates (system information, such as platform informa-

tion, installed updates and installed drivers) ...

This is how the WSUS server knows what updates are needed on the client. This

method is be called several times. The first time it is called the client sends empty

update ID parameters. The last time it is called it contains strings of hardware drivers

installed on the client.

– [metadata] GetExtendedUpdateInfo (update meta-data)

This includes information such as the EULA and description of each update.

– [confirmation] ReportEventBatch (meta-data and sync updates status)

Information about the status of the client registration is returned. The client passes a

large XML file to the server here detailing the status of the updates and once again

providing platform information.

– The first batch of updates is then downloaded as per point 3 above. In this case it is

the Windows Installer 3.1 and BITS 2.0 updates. Once installed these will allow the

full WSUS functionality to be used. Files are downloaded from sub-directories of the

/Content/ virtual directory in chunks, presumably to allowresuming of downloads if

the process is interrupted.

– [confirmation] ReportEventBatch (update download status)

Information about the status of the download of the patches.This is sent before the

update is installed, but after it is downloaded. According to the WSUS deploy guide,

the AU client should request meta-data from the WSUS server again after download-

ing but before installation[222]. This is to ensure that approvals revoked during the

download are not ignored. However there were no separate requests representing this,

but it is presumed it would occur here.

– [confirmation] ReportEventBatch (update installation status)

APPENDIX B. ANALYSIS OF WSUS 186

Before the client restarts and after the updates have been installed another report is

made. A separate report is made for each installed update.

• After a restart the behaviour seen in point 4 (of the previoussection B.7.1) is seen. No

notification was received by the logged on administrator, this conflicted with how group

policy had been configured. It was assumed that updates for immediate install were being

installed as that optionhad been activated (see section B.4.2). However a restart was

required, which should not happen if this activity was as a result of immediate updates, as

they do not require a restart. This resulted in the followinguse of the web service:

– [confirmation] ReportEventBatch (update installation status)

This is a report on the, now complete, installation of the updates installed before the

reboot.

– [location on the web server of updates] GetFileLocations (update ID’s and file di-

gests)

– The updates are then downloaded. Once again the AU client should check that none

of the approvals for the downloaded updates have been revoked during the download.

It is presumed that this check would be part of the GetFileLocations method.

• The machine is then restarted and 24 updates are available asper point 5, after which these

calls are made:

– [confirmation] ReportEventBatch (update installation progress) ...

This is presumed to be reporting on the status of the installation of updates from the

previous point.

– [update location] GetFileLocations (update ID’s and file digests)

– The updates are then downloaded and installed.

– [confirmation] ReportEventBatch (update installation progress)

• The machine is then restarted and another call to ReportEventBatch is made before point

8 is run. Runningwuauclt /detectnowresulted in:

– /wuident.cab

/wusetup.cab

These request are made with a date stamp as a parameter.

APPENDIX B. ANALYSIS OF WSUS 187

– [required update ID’s] SyncUpdates (system information, such as platform informa-

tion, installed updates and installed drivers) ...

– [metadata] GetExtendedUpdateInfo (update meta-data)

– One update is then downloaded and installed.

– [confirmation] ReportEventBatch (update installation progress)

These are the items of interest. The full packet capture is available from this sitehttp://

singe.rucus.net/masters/files/WSUS-packetcapture.tar.gz (warning this

is a 60MB file) for further analysis.

B.7.3 Analysis

From the information above, a pattern of behaviour can be mapped.

When the AU client first contacts the WSUS server it makes two requests, each with a date stamp

as a parameter. The files are returned timestamped and signed.

1. wuident.cab

2. wusetup.cab

After this all future interactions (apart from BITS downloading the updates) are done via a web

service.

After which if the AU client does not have a cookie or its cookie has expired the following

handshake is made with the WSUS server:

1. GetConfig

2. GetAuthCookie

3. GetCookie

4. RegisterComputer

APPENDIX B. ANALYSIS OF WSUS 188

If the AU client still has a valid cookie, the above does not occur. The cookie is then pre-pended

to all future transactions.

If the WSUS server has synchronised with an upstream server since the AU client’s last synchro-

nisation, a new synchronisation is performed. This looks like:

1. SyncUpdates

2. GetExtendedUpdateInfo

3. ReportEventBatch

4. Updates are downloaded.

If the AU client does not need to synchronise but has pending updates, a call is made to:

1. GetFileLocations

2. Updates are downloaded.

A reporting call is made after every action, and would be madeafter an update sync, update

download and update installation. After the updates are downloaded the call is made:

1. ReportEventBatch

After the installation of the updates another report is made:

1. ReportEventBatch

If a restart is required to install any of the updates, another call is made after the machine has

rebooted and, presumably, installed the updates.

1. ReportEventBatch

APPENDIX B. ANALYSIS OF WSUS 189

B.7.4 Packet Capture Summary

B.7.4.1 Interface

On the whole WSUS seems to be better designed. It utilises an open SOAP based web service,

keeps track of each interaction and provides far more information on the patching process. SUS

on the other hand, required third party log analysers to interpret an obscure query string. The

use of a standard web service should make it easier for third party extensions to be created. The

large amount of information generated should allow for manydifferent reporting options beyond

what WSUS currently offers.

B.7.4.2 Security

There are two security worries here, the first is disclosure of sensitive information and the second

is interference with the patch process. The downside of the extra information mentioned above

is that a lot of information about client machines is being sent as clear-text, this information

includes a list of hardware, installed drivers and some software being used. There is enough

information to allow an attacker to build a replica system totest attacks on. This is a worry, but it

can be mitigated by good network design. The second worry is less troublesome as a man in the

middle attack (which the cookie exchange may be vulnerable to) would not be able to circumvent

the security of the signed patches.

B.8 Resources

There are several fairly useful resources for WSUS available. Several were quite useful while

writing this document.

1. Microsoft’s WSUS pagehttp://www.microsoft.com/wsus/

2. The WSUS Wikihttp://wsus.editme.com/

3. SUS Serverhttp://www.susserver.com/

4. Patch Management Mailing Listhttp://www.patchhmanagement.org/

APPENDIX B. ANALYSIS OF WSUS 190

B.9 Conclusion

WSUS is definitely a large step in the right direction. It has many great improvements over

SUS, which seem to indicate that Microsoft is listening to the consumer and responding to their

communities security needs. The interface is easy to use andprovides some great functionality.

The extra features provided on the client-side are equally welcome. Microsoft has developed a

good architecture from which their patching strategy can bebetter managed and built upon. The

most notable problem is that WSUS still only supports a limited range of Microsoft’s products

and is sorely lacking support for third party updates. Some of these problems are resolved in

Microsoft’s Systems Management Server (SMS).

