Limiting Vulnerability Exposure through effective
Patch Management: threat mitigation through
vulnerability remediation

Submitted in fulfilment
of the requirements of the degree
MASTER OF SCIENCE
in the Department of Computer Science
of Rhodes University

Dominic Stjohn Dolin White
<project@singe.rucus.net>

January 2006

Abstract

This document aims to provide a complete discussion on vaibilgy and patch management.It
looks first at the trends relating to vulnerabilities, exygpattacks and patches. These trends
provide the drivers of patch and vulnerability manageméntderstanding these allows the fol-
lowing chapters to present both policy and technical sohgito the problem. The policy lays
out a comprehensive set of steps that can be followed by @an@ation to implement their own
patch management policy, including practical advice oagrdtion with other policies, manag-
ing risk, strategies for reducing downtime and vulnerfpdnd generating patch metrics. It then
discusses how best a vendors should implement a related paéase policy that will allow
end-users to most effectively and timeously mitigate vidbdities. The next chapter discussed
the technical aspect of automating parts of such a policyrenwddefence in depth can be ap-
plied to the field of patch management. The document thenwdes that patch management is
becoming more difficult and the guidelines described wilagong way into creating a workable
and effective means for mitigating exposure to vulnerabgi However, more research is needed
into vulnerabilities, exploits and particularly into tlats.

Contents

1 Introduction 1
1.1 Backgrounds e e
1.2 PatchManagement 3

1.2.1 Definitions
1.3 The Need for Patch Management 6
1.4 Objectives e e e e T
1.5 Methodology e
1.6 Conclusion 01

2 Vulnerability and Patch Management 11
2.1 Introduction 11
2.2 The Vulnerability Life-Cycle, 12
2.3 Vulnerabilities, Malware and Exploitation Trends 16

2.3.1 Increasing number of vulnerabilities 16
2.3.2 Increasing numberofattacks 18

2.3.3 Exploitwindowshrinking 21

CONTENTS 3

2.4 Problemswith Patches 22
2.4.1 Unpredictable Patches 23
242 TooManyPatches 24
2.4.3 Windowto Patchis Shrinking 25
244 ComplexPatches 26
245 Hardtoobtainpatches 26
2.4.6 ProblemPatchExamples 28

2.4.6.1 SQL Slammer/SapphireWorm 28
2.4.6.2 GDI+JPEG VWulnerability 30
25 Conclusion 13
3 Policy Solutions 33

3.1 Introduction 33

3.2 Patch ManagementPolicy 34
3.2.1 Patch and Vulnerability Group 35
3.2.2 Security, Stability, Functionality Patches and Vdodkinds 36
3.2.3 Policy e 38

3.2.3.1 Information Gathering 40
3.23.2 RiskAssessment. 47
3.2.3.3 Scheduling and Patching Strategy 53
3.234 Testing e 57

3.2.3.5 Planning & Change Management 61

CONTENTS

3.2.3.6 Deployment, Installation and Remediation

3.2.3.7 \Verification & Reporting

3.2.3.8 Maintenance

3.23.9 Summary. e

3.3 Conclusion e

4 Vendor Patch Release Policy
4.1 Introduction
4.2 Stateofthe Art
4.3 Ananalysisof patchschedules

4.3.1 TheDisclosureDebate

4.3.1.1 DelayedDisclosure

4.3.1.2 Instantaneous Disclosure
4.3.2 Patch Schedules and Delayed Disclosure
4.3.3 Patch Schedules and Instantaneous Disclosure
4331 Quality e
4.3.3.2 Planned Deployment
4.3.3.3 Examples
4.3.4 Conclusion
4.4 Advice for implementing a Patch Release Schedule
4.4.1 Dual Schedules and Separation Criteria

4.4.2 Predictable Patch Release Schedule

75

75

76

78

CONTENTS 5
443 Critical PatchRelease 94
4.4.4 Encouraging Delayed Disclosure 96

4.5 CoNnClusion e 79

5 Practical Solutions 98

5.1 Introduction 98
5.2 Patch Management Software 98
5.2.1 Functionality and Classification of Patching Tools.. 99
5.2.1.1 Notification 103
5.2.1.2 Inventory Management 104
5.2.1.3 \ulnerability Scanner L. 510
5214 PatchTesting. 106
5.2.1.5 PatchPackaging 107
5.2.1.6 Patch Distribution L. 111
5.2.1.7 Reporting 111
52.1.8 Summary. e 112
5.2.2 Architecture. 121
5.2.2.1 Agentless 112
5.2.2.2 Agent 114
5.2.3 AvailableTools 151
5.2.3.1 Evolution 115

5.23.2 Examples 117

CONTENTS 6
5.3 DefenceinDepth 119
5.3.1 Firewallsand Anti-Virus 119
5.3.2 Intrusion Detection/Prevention Systems 120
5.3.2.1 VirtualPatching 121
5.3.3 OtherHardening 212
5.3.4 Software Selection 122
54 Conclusion 241
6 Conclusion 126
6.1 Introduction 126
6.2 Objectives 126
6.2.1 Summary e e e e 128
6.3 ProblemsandSolutions 129
6.4 Future Work e 201
6.4.1 ThreatManagement 912
6.4.2 \Wulnerability Detail and Trend Tracking 130
6.4.3 Optimal Time to Patch for Large Vendors 130
6.4.4 PatchStandards, 311
6.5 FinalWord 13
Bibliography 133
References 133

CONTENTS 7
A Time-line of Notable Worms and Viruses 157
Al Introduction 157
A2 Time-line 51

A21 2006 e 157

A2.2 2005 e 157

A.2.3 2004 e 158

A2.4 2003 e 158

A25 2001 e 159

A2.6 1999 . . . 159

A2.7 1998 . .. 160

A28 1995 . .. 160

A.2.9 1992 . . L 160

A.2.10 1989 . . . e 160

A.2.11 1988 e 160

A.2.12 1987 . . . e e 160

A.2.13 1982 . . e 161
B Analysis of WSUS 162
B.1 Introduction 162
B.2 WhatsNew 316
B.3 Installation 164

B.3.1 Topology 164

CONTENTS 8

B.4

B.5

B.6

B.7

B.3.1.1 Default. 164
B.3.1.2 Grouping e 164
B.3.1.3 Chaining 166
B.3.1.4 ClientDownload 166
B.3.2 Requirements 716
B.3.3 Server. 168
B.3.4 Client 169
Configuration 169
B.A4.1 Server. 169
B.4.2 ClientSide e 174
Patching e 771
B.5.1 Synchronisation 771
B.5.2 Approval 177
B.5.3 Detection 179
B.5.4 Distribution 8a
B.5.5 |Installation 8aL
B.5.6 \Verification as
Reporting e 801
Packet Capture e 181
B.7.1 StepsPerformed 118

B.7.2 Resulting Network Traffic 184

CONTENTS
B.7.3 Analysis 187
B.7.4 Packet Capture Summary 189
B.7.41 Interface 189
B.7.4.2 Security 189
B.8 Resources 891

B.9 Conclusion s 901

List of Figures

2.1

2.2

3.1

3.2

3.3

4.1

4.2

5.1

5.2

B.1

B.2

B.3

Theorised Vulnerability Life-Cycle [1] 14
Generalised Model of Empirical Findings 16
Hypothetical graph of the risk of compromise and patgh2). 55
Patch application and its impact on Availabif8} 56
Diagram of the proposed Patch Managementpolicy 73
Delayed Disclosure and its effects on vulnerable mashamd exploitation

Source: Modified from Rescorla[4] 81
Instantaneous Disclosure and its effects on vulnerabtshines and exploitation
Source: Modified from Rescorla[4] 82
Graph of the effectiveness of binary patchtools110
Graph of the number of vulnerabilities in different Linkernel versions per

year.

Source: CVE[5] 124
Default Topology 165
Grouped Topology e 165
Chained Topology 166

LIST OF FIGURES 2

B.4 ClientDownload Topology e 167
B.5 WSUS Administrative Interface oo 168
B.6 WSUS Configuration 170
B.7 Automatic Approval 171
B.8 ProductUpdate Selection 172
B.9 Client-Side Computer Grouping e . 173
B.10 New BITS Options 175
B.11 Remove Accessto Windows Update 176
B.12 Update Approval 178
B.13 Patch Status Detection 179
B.14 WSUSTreports e e 181
B.15 Reportby Computer 182

B.16 ReportbyUpdate 183

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

5.1

5.2

5.3

Types of Patch and Remediation Summary 38
Patch Management Policy Summary 39
Factors influencing priorityrating oo 42
Patch and Vulnerability Detail Summary 44
Exploitand Threat Detail Summary u.... 47
ImpactLeve[6] e 52
Likelihood[B] 53
RiskLevel6] e 53
Half-Life of Vulnerabilities [7,8,9] 78
(Corrected) Microsoft Time to Patch Summary 89
Table comparing file sizes of different methods of disiting the same file. . . . 109
Patch Management Automation 113
Comparison of Patch Management Tool Functionality 118

LIST OF TABLES

5.4 Table depicting vulnerabilities in the different Linkernel versions over time
Source: CVE [5]
Note: The total columns do not add up correctly as some vabilities affect multiple kernel
versions or non-standard kernel patches. For example id #9€re were 13 vulnerabilities
which overlapped and in 2000 one vulnerability was in theteas kernel patch and in 1999 one

vulnerability was in the 2.0 kernel version which isn't inded. These are included in the total

to provide an idea of the general reporting trends in thedikernel.

Acknowledgements

For-most thanks to the Father, Son and Holy Spirit.
umuntu ngumuntu ngabantu - a person is a person through gibeple

Thanks to Barry Irwin, my excellent supervisor, for his yeaf support and without whom this
thesis would have been left to languish. Thank you to my nrpfa¢her and brother for their
support. Thank you to my friends who provided support andumdmg board; in particular
Jason van Niekerk, Chantelle Morkel, (the KiDDIEs) JonatHéchcock, Yusuf Motara, Ingrid
Brandt, Bradley Whittington, Russell Cloran, and David Miac Thanks to members of the
international security community, particularly Adam Stamk, Susan Bradley and the excellent
volunteers at the Internet Storm Centre for their help. i®aer thanks to Daniela Faris for
agape philia anderos Bradley Whittington for giving me a place to stay, even thout was
flea-ridden and Chantelle Morkel for the food and laughter.

A few people gave up their valuable time to help proof read;tthank you Johnathan Hitch-
cock, Thamsanqua Moyo, Fred Otten and Barry Irwin. Finalignk you to Rhodes University
Computer Science department, Professor Peter Clayton, Golam, the NRF and DAAD for
providing me with the opportunity and resources to studywaispecial thanks to Caro Watkins
for letting me sleep where | shouldn't.

This work is licensed under the Creative Commons AttrilmiddonCommercial-ShareAlike 2.0 South
Africa License. To view a copy of this license, visit httpréativecommons.org/licenses/by-nc-sa/2.0/za/ or aend
letter to Creative Commons, 543 Howard Street, 5th Floar,Bancisco, California, 94105, USA.

Chapter 1

Introduction

1.1 Backgrounds

“At the moment computer security is rather basic and moshctive. Systems
fail absolutely rather than degrade. We are still in a worltieve an attack like the
slammer worm combined with a PC BIOS eraser or disk lockimd ¢could wipe
out half the PCs exposed to the internet in a few hours. In aesere are fortunate
that most attackers want to control and use systems thegkatsdher than destroy
them?”

— Alan Cox, Linux Kernel Developer in an Interview with Edd bill [10]

Alan Cox’s quotation provides a concise introduction irite turrent state of information secu-
rity, the field in which this research is conducted. The toide quote sets the tone of the field,
there are a significant number of evolving threats and witbfiactive research and defences we
are in danger of being overwhelmed. He first refers to therpinature of system failures, where
it is an all or nothing world, and nuanced risk mitigatiorastgies that allow for the reality of
some intrusion without resulting in a complete system bre@me unavailable. He references
one of the most effective worms we have seen in recent timeghwnanaged to compromise
90% of its hosts within 10 minutes. It was the first example tiieorised Warhol worm able
to disable every host on the internet in 15 minutes, a reteréo Andy Warhol when he said
“everyone will have 15 minutes of fame” [11]. Cox points ol tunsophisticated nature of the
Slammer worm, it contained no destructive payload, in falknf its damage was caused by the

1

CHAPTER 1. INTRODUCTION 2

excessive load it put on infrastructure in searching foriafetting hosts. Slammer’s record has
since been topped by more dangerous worms such as the Wittg.wover the last few years

some of the least destructive worms, have resulted in a rafigellywood style consequences:
ATMs being infected with malicious code [12], planes beimgunded [13], waste-water plants
disgorging sludge [14] and a nuclear power plant comprofiise

Cox’s next reference is to the changing nature of maliciout#ties on the Internet. Where
previously malicious attackers were hypothesised to begsigeeks with questionable ethics,
increasingly threats appear to be coming from criminaltestiwith a profit motive [16], who
seem to be collaborating to use multiple simultaneous lattactors [16]. Two neologisms
have been added as sub-types of malwaspyware and adware, a reference to the increasing
monetisation of malicious software that seeks to steabpgiinformation for a profit [17]. This
malicious software is employing sophisticated attack amtrol techniques often utilising the
same techniques as the good guys. For example the hackerddefeot-kit uses the same
signature based approach virus scanners use, to detestrastsoftware and disable it [18].
Cox’s reference to controlling and using systems encongsassny examples, including wide
scale identity theft [19], massive botnet farms, wide-adrghishing scams and an out of control
SPAM problem. Examples of extortion and ensuing DDoS agtatkon-payment abound [20,
21].

As market places and business start building their senaoe®p of the Internet, it is becom-
ing increasingly attractive for criminals to follow suitZR This has resulted in an increase of
malicious software (malware) and successful intrusiora)yof which pass undetected. Recent
activity has indicated a shift from large scale mass-maifet worm attacks to rapidly evolving
targeted malware attacks, in an effort to make detectioddrdf6]. As more systems become
networked and private networks are attached to public dreeattack surface of an organisation
is increased, allowing an attacker to take advantages of cmnplex systems and complex in-
teractions between multiple systems. In response therbdesan increase in security activity
to counter such threats. Much of the work is dealing with pgots that have existed for a long
time, but have been exacerbated by the increase in maliagiivsty. In particular the automated
exploitation and propagation of malware in the form of worimas meant that an administrator
has to deal with every vulnerability and deal with it quickly

Exploiting weaknesses and vulnerabilities in systems mmega requires an attacker to think
outside of what is considered normal operating procedtwediscover what unusual behaviour

1A shorthand for malicious software.

CHAPTER 1. INTRODUCTION 3

will result in a higher level of access to the system. Thiackter needs to find only one hole, but
often many exist. Conversely, a security professional sgeed@dpply the same level of creative
thinking into defending against every possible hole. Tips the scales in the attacker’s favour.
However, there is a ongoing and concerted effort to providekable defence strategies by the
white hat security community. If organisations develop and impletmnigiorous security policies
many of the threats can be mitigated to a manageable level.

This work is part of such an effort and hopes to provide soméagce and understanding to the
field of patch management.

1.2 Patch Management

The specific field of study in this work is that of patch managem This field is a subset of
two related fields, namely, vulnerability management arahge management. A patch is used
to mitigate a vulnerability permanently, and as such it isamdatory part of any vulnerability
management program. When many patches are regularlyl@tstehange is regularly introduced
into systems which could potentially cause failures, th#senges need to be managed. This
describes the patch paradox where without a patch an asagherable to attack, and with a
patch the asset is vulnerable to failure.

While patch management has recently become a regular tbplisaussion, the first recorded
mention of the phrase ’patch management’ on USENET is in 129224, 25], although the
concept of patching was introduced before then. Larry VIPgrl fame) wrote the Unipatch
utility in 1985 [26]. In 1997 a project to create a platfornnagpecific automated patching solu-
tion was funded by the US Department of Energy [11] while atgsame time Eugene Spafford’s
COAST Laboratory Secure Patch Distribution Group invesgd how to best distribute patches
[27]. This may leave an observer wondering why patch manageis receiving so much recent
attention? The common perception is that the onslaughtwefrakeffective worms: Code Red,
Nimda, Slammer, Blaster and Sasser; for which patches weiitable, often months or weeks
in advance highlighted the need for effective patch managgemHowever, these worms too
were nothing new, in 1988 the Morris worm [28] did the samaghiThe growth in the num-
ber of inter-networked users and devices on the Internetlaidincreasingly large bandwidth,

2A white hat security professional is one dedicated to theégutmn of assets, as opposed to malicious black
hats. The terms are a reference to the colour of the hats wpthelgood guys and bad guys in old cowboy movies.

CHAPTER 1. INTRODUCTION 4

the increase in the number of software vulnerabilities, itfeeease in sophistication, number
and speed of malicious attacks and the difficulties in deptppatches have all contributed to a
re-invigoration of the discussion.

1.2.1 Definitions

To aid further discussion, some definitions need to be peakidrhis is particularly important
given the wide range of definitions for terms in the relagwgbung field of information security.
Specifically there is some argument over the use of the témadt’. Bejtlich claims that security
professionals are “mixing and matching the tetmgat andvulnerability andrisk to suit their
fancy. [29]" It makes sense to side with Bejtlich on this goifPrimarily because few seem
to disagree with him on the subject. In addition there areeisd\high quality resources that
agree with his definitions, most notably the US military imf@tion Assurance division [30] and
the Office of Cyber Security & Critical Infrastructure Coordtion [31], the National Institute
of Standard (NIST) Special Document 800-30 [32] and Micfts&ecurity Risk Management
Guide [33]. Lastly, Bejtlich’s use of the term allows for a ragranular use of the others terms,
particularly 'exploit’. It is unfortunate that documentsch as ISO/IEC 17799 do not have a
formal definition of such terms, while other high quality soes such as the National Institute
of Standards Special Publication 800-40 on patch managemectually incorrectly defines the
term, instead using threat as a synonym for malware[34]s Tthe definitions for terms used in
this document are:

Vulnerability

A vulnerability is a weakness in an asset which could be etgrdy a threat. In the context
of this discussion the asset is usually an electronic syst®ther fields may define the asset
differently, for example in the field of social engineeriing tasset usually refers to a person. A
vulnerability usually refers to “flaws or misconfiguratiaist cause a weakness in the security
of a system” [32].

Threat

IEC/ISO 13335-1 [35] defines a threat generally as “a padénéuse of an unwanted impact to
a system or organisation.” More specifically a threat is aityewith both the capability and the
intention to exploit a vulnerability in an asset. Some seardefine a threat source as the actual

CHAPTER 1. INTRODUCTION 5

entity and the threat as “capabilities, intentions, andckttmethods of adversaries to exploit,
damage, or alter information or an information system .”][BRis document finds little use for
the distinction and groups both this definition of threat #mwedat-source under the same term

Exploit

An exploit is either; a process or tool that will attack a \erdability in an asset; or it is the
action of attacking a vulnerability (exploiting a vulneildlp) thereby realising the threat against
that asset. Malware in the form of viruses, Trojans, rotd-khd most often worms often use
exploits, but not always. For example, while phishing isxaneple of exploiting human trust, in
this document exploits refer to tools or processes speltyfiaened at exploiting vulnerabilities
in software and electronic systems.

Patch

A patch is a piece of data used to update a software produft f86ecurity patch is a change
applied to an asset to correct the weakness described bylnerability. This corrective action
will prevent successful exploitation and remove or miteggatthreat’s capability to exploit a
specific vulnerability in an asset. In a broader sense a atohe used to correct a flaw that
might not be security related, such as performance issuesutd add new functionality. These
are non-security patches and are usually called funcitgraalstability patches. A patch usually
consists of packaged pieces of electronic systems codetoseglace existing flawed code. A
patch is distributed in one of three ways:

1. as a patch to the source code of a program
2. a patch to the compiled binary code

3. a complete file(s) replacement.

Typically a patch contains a small change and patches wige lahanges are usually given
different names such as a service pack or cumulative updatelor such as Sun Microsystems,
Microsoft, Oracle Red Hat etc. often have a defined nomemddor their updates?] 37, 3]. In
this document the primary discussion will focus on secypdyches unless otherwise specified,
as security patches are the the most critical patch and tis¢ aifcult to manage. This is for
two reasons: failure to deploy a security patch may resudinimtrusion; and security patches

CHAPTER 1. INTRODUCTION 6

are released more often, with functionality patches ugualled in to product release cycles. A
fuller discussion on this is provided in section 3.2.2.

Remediation

Remediation will refer to the super-set of possible ways gigating a vulnerability of which
patches are just one method. Configuration changes, camplebval of the software, anti-virus
signatures and other additional workarounds could allipbsmitigate a vulnerability and will
be referred to in general asmediation32].

1.3 The Need for Patch Management

Correct patching isn’t just a matter of installing everygtateleased by a vendor. Currently there
are over a hundred new vulnerabilities announced each wekths number appears to be grow-
ing (see 2.3.1), each of these vulnerabilities usually hesreesponding patch or workaround.
Sometimes these vulnerabilities remain unpatched for iagherf time. An administrator needs
to know which of these vulnerabilities is relevant to herammigation and what their implications
are.

The window between the release of a vulnerability and thesaisad of an exploit is decreasing [7],
with some worms appearing hours after the release of a \abilgy [38], this window is often
smaller than the average organisation’s patch deploymiaciow. This is partly because patches
come with their own set of problems, and sometimes do moreagdarthan than the exploitation
of the vulnerability [39]. Thus, an administrator needs &fprm a risk analysis on each one,
often with incomplete information.

The Morris worm of 1988 lead Bill Cheswick to bemoan firewadlipractises with the now
famous description “a sort of crunchy shell around a soféwghcentre.” [40] With the advent
of mobile computing, multiple service multiplexing over A, ubiquitous e-mail and instant
messaging, the phrase has only become more applicable. walineever was, and never will
be a suitable defence by itself. End-user desktops are n@mtst commonly targeted due as
threats exploit end-user trust with confidence tricks okienteb, instant messaging, e-mail and
more. Therefore, decision making is not the only bottle neffen a patch needs to be deployed
to hundreds or thousands of machines and not just intercietfaervers.

CHAPTER 1. INTRODUCTION 7

Each machine or groups of machines has a different configarat circumstances that need
to be taken account of and which make patching non-triviaffent operating system often

have different methods of patching, thus if an organisatesfollowed, the often sensible, route
of platform differentiation, they will need multiple paicly mechanisms. Even if an organisa-
tion has a homogeneous computing platform different so#vpaoducts may require their own

patching mechanism, particularly in a Microsoft envirominehere no third party patches are
currently handled by Microsoft’s patching system.

These complexities all contribute to the quagmire many adstrators and home users find them-
selves in when it comes to patching. There are too many \aihiléres, requiring too many
patches, with too many deployment mechanisms, to be deptoyio many machines. A more
in depth discussion of these problems is provided in ch&pter

1.4 Obijectives

The objective of this dissertation is to bring some sensetimt patch management discussion.
It aims to provide a discussion of all aspect of patch managernhat will hopefully provide
guidance to managers, system administrators and softvesu@ovs. The dissertation provides
an analysis and definition of the theory of patch and vulnéralnanagement which is then
distilled to provide practical advice.

Specifically there are seven objectives. They starts astigations into the state and causes for
patch management and move towards providing solution®foesof the discovered problems.

The first objective is to provide an analysis of the vulndigdife-cycle. This will place patches
in their correct context providing discussions on vulndigtdisclosure, exploits and patches.
The second objective is to provide an analysis on what causleerabilities and the trends
surrounding the vulnerability life-cycle. The third obj®e is to provide a discussion on patches
and the problems that result in the difficulty managing thefagether these three objectives
describe the problem any solutions will need to address.

The fourth objective is to provide a method for implementangatch management policy to
effectively address the problems discovered. This methtdbevpractically applicable to allow
its implementation without recourse to multi-volume risemagement strategies and expensive
consultants. The fifth objective is to provide a discussinorhow vendors can best implement

CHAPTER 1. INTRODUCTION 8

a scheduled patch release strategy given the increasing tosvards releasing patches on a
predictable schedule. Together these objectives proviiscaission and policies which can be
used to solve many of the problems discovered in the prewabjetives.

The sixth objective is to provide a discussion on where trseleed patch management policy
can be automated and benefit from software tools. This veil alclude a discussion on currently
available tools with a view to separating out the marketiggehpresent in this young growth
industry. The seventh objective is attempt to create ognate some of these tools to support
the policy developed in the previous objectives.

A summary of these objectives is that the research condhaoeed to provide:

1. An analysis of vulnerabilities, exploits and patches Bcussing the vulnerability life-
cycle.

2. An analysis of vulnerability, exploit and attack trends.

3. An analysis of patches and their problems.

4. A discussion on how to implement a patch management policy

5. Adiscussion on how vendors can implement a scheduleti paliease policy.
6. A discussion on patch management tools and automating @fathe policy.

7. Tools to help automate and integrate parts of the policy.

The first is to discuss the cause of patching; vulneralsliti@lnerabilities are the root problem
and as such a thorough understanding of them is requiredtr@hes, causes and influences of
vulnerabilities and related research will provide an ustierding of the need for patches and
what specific problems patches are being deployed to fix.

1.5 Methodology

In reaching the objectives discussed in the previous sedair primary methods will be used,
namely:

CHAPTER 1. INTRODUCTION 9

1. aliterature survey
2. argumentative analysis
3. case studies

4. best practice models

Each of these will be used to support or refute hypothesestenubest practise models are often
the results of a hypothesis that holds true.

The original intention of this work in its early incantatiasas to provide an elegant software solu-
tion to solve the patch management problems. However, ise@as discovered that the problem
is too complex to be solved by software alone. A quotatiorBmyce Schneier, aptly describes
this, “If you think technology can solve your security pretvs, then you don’t understand the
problems and you don’t understand the technology.” [41] I&/kime is spent discussing the
plethora of software written to perform patch managemeskistét does not form the bulk of this
document, rather a thorough identification of the problenasiad vulnerabilities and patches
followed by solid policies and recommendations are dedaile

Instead, the large amount of writing on patch managementtamdlated field’s is drawn upon
in each context. Often one authors work can be used with aristto form a derivative work
that adds to the commons of security knowledge. This syighesrk is a vital tool on many
levels. The synthesising of ideas will hopefully provideaalescing of consensus around one
point where many views exists. The synthesis of tools wilstay the interaction necessary for
a successful multi-layered approach to security. While thay seem like an obvious point, the
advent of security companies and their related profit matften results in reduced collaboration
in attempt to become the sole product vendor of a producterakgom the existing literature
new models and arguments can be derived or created. Thuseti®d of research is largely
analytical.

Finally, it should be noted that the majority of the referemare electronic. This was done for
two reasons, the first was to try and ensure that URLSs for akwaeaailable on-line were included

allowing a reader to quickly locate them. However, the mamgly electronic references are due
to the recency of many of the issues discussed. There haditileepublished research dealing

with several of the points and events discussed in thisthesid given the focus on current
trends and events they were unavoidable. Additionallyettage still a significant number of

peer reviewed papers and other 'traditional’ referencésgitimise many of the points.

CHAPTER 1. INTRODUCTION 10

1.6 Conclusion

Information, computer and network security is in a poorest&pecifically our current method-
ologies for responding to malware are insufficient. Patchagament provides a final solution
to the holes that malware exploits. However, it has its owtro@roblems that must be dealt
with. This dissertation will analyse the issues aroundipaianagement and plot a way forward.

This will be achieved in four parts. First the patch paradatk e discussed, where the diffi-
culties in remediating vulnerabilities are analysed intcast with the difficulty in managing and
deploying patches. For here a meta-policy framework is ipexwith an in-depth discussion
of how an organisation can best implement a policy to raedily and effectively remediate
vulnerabilities with patches while minimising the extrakrpatches include. After this an argu-
mentative analysis of the current trend of scheduled padgisiused to provide advice as to how
vendors could best implement a patch release policy. Firthl technological aspects of patch-
ing are discussed, specifically how a patch managementyjait benefit from automation, and
where current solutions fit in.

Chapter 2

Vulnerability and Patch Management

2.1 Introduction

“This impossible reality has sent patching and the newlytedrdiscipline as-
sociated with it “patch management” into the realm of the atos More than a
necessary evil, it has become a mandatory fool’s errand”

—Scott Berinato;Patch and Pray” CIO Magazing39]

Software vulnerabilities have always existed and probabiays will. They result from the
mistakes of human programmers. This section first aims teigeecan analysis and discussion
around the trends and statistics of vulnerabilities. Ratris the final response to a vulnerability
and thus patching trends will follow the cycles of vulneliptrends closely. An understanding
of vulnerabilities will allow better decisions about whemdahow patches should be deployed.
It is for these reasons vulnerability trends or a case-study recent worm such as Blaster
or Slammer usually form the introduction to most papers ausg and particularly on patch
management. Successful worm runs have the effect of mimiivétte security community to
action, for example the CERT/CC was formed in response tiithreis worm of 1988 and much
of the recent work into patch management came after the wathreaks of 2001 [42].

Vulnerability management is the process of identifyingnitaring and responding to vulnera-
bilities. Vulnerabilities in a released product are not aged risks that the product manufacturer
has an understanding of. They are unknown and the liabdityHfese risks often falls to the cus-
tomer. Thus, it is the customer’s responsibility to idgntlie vulnerabilities affecting them in

11

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 12

order that better risk management decisions can be made chi@pter provides a description of
vulnerabilities and the trends they are facing.

e They are increasing.
e They are being exploited more often.

e The time until an exploit is released is shrinking.

Patch management is the process of correctly and timeopplyiag software patches to min-
imise downtime and the attack surface of a system. As patateselease in response to a
vulnerability, they too cannot be predicted, and thus géiang patch management is a difficult
task. The complexities of vulnerabilities become appavdrgn attempting to fix them. These
complexities are preventing patches from being deploy@e@dusly to vulnerable systems, in
some cases patches are only being deployed months latethé-faw administrators diligently
applying patches, the task is still non-trivial. The prabtewith patches and patching will be
explored. These problems will provide the guidance necgssdormulating solutions in later
chapters.

2.2 The Wulnerability Life-Cycle

As discussed in the previous chapter a vulnerability is akwess in an asset which could be
exploited by an entity. The asset could be anything rangiogfa computer system to an em-
ployee. In the context of this chapter we will be discussoitygare and hardware vulnerabilities
that affect computerised systems. There are several slagselnerability each of which could
allow a variety of activities, the worst of which is remotedecexecution leading to a full system
compromise. For a discussion of trends to occur an undelisiguof the vulnerability life-cycle
is required. The life cycle of a vulnerability has severabgs; Arbauglet al. [43] suggest there
are seven stages with an additional stage mentioned by Bretwal. [44] of the vulnerability
becomingpasse Schneier [1] has a similar description of stages but do¢glifferentiate be-
tween the release of a scripted exploit and the populavisati the vulnerability. The stages are
as follows:

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 13

1. Thecreation of the vulnerability. This is when the vulnerability is cted during the
implementation of the vulnerable product.

2. Thediscoveryof a vulnerability. The vulnerability in the product is fodinSeveral people
could discover the vulnerability at different times. Létis ever publicly known about this
step.

3. The discovered vulnerability disclosed The disclosure could come from a variety of
sources, in a variety of ways. It could be announced by thelmeor an independent
researcher, or secreted away in a product’s Changé. Log

4. The vulnerability iscorrected This is usually done by the vendor releasing a patch or
workaround. This should lead to a reduction in successfuls$ions overall.

5. The vulnerability ioublicised This can happen in a variety of ways; for example news
reporting, publishing of an advisory, worm activity; buetand effect is that many people
know about the vulnerability.

6. The exploit isscripted This can mean that workable exploit code was released,-or in
structions on how to produce one are released, either waesudt is that the number of
attackers is greatly increased as those with less skilipfskiddies) can now perform the
attack.

7. The vulnerability becomasasse Attackers become disinterested in exploiting this vulner-
ability. This is not guaranteed to happen with every vulbgity, and some vulnerabilities
(and exploits) are shown to have cyclical popularity [43].

8. The vulnerabilitydies This happens when the number of possible targets vulrestabl
exploitation drops to an insignificant level.

The steps follow this rough order, but there can be signifivanation. For example the vul-
nerability could be first corrected with the disclosure daling after the correction is reverse
engineered; or the disclosure, correction and publicityi¢tall happen at once. Arbaugh al.
[43] note that in the past the vulnerability life cycle wagdhised to look like something like
Figure 2.1, which is a replica of Schneier’s life cycle [1]Jowever, current research has shown
some of these assumptions to be incorrect and has providpiieshdata to better understand

LA register of changes made in a product from one version toghe

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 14

—_——— e ——————

Vulnerable I
Machines

Vulnerable
Machines

&

Exploitation

Rate of
Exploitation

v

0,0 Time
Crea{tion Discldsure . PatEh

Discovery Popularisation

Figure 2.1: Theorised Vulnerability Life-Cycle [1]

some parts of the curve. The corrected life-cycle can bedonrfigure 2.2. There are several
important differences.

e Arbaughet al. [43] found that the significant factor which triggers anrgase in the num-
ber of reported intrusions was the scripting of the explbitis caused a dramatic increase
in the number of attempted intrusions even if the correcfmatch or workaround) had
been released previously, thus rendering the assumptidahs original theorised model,
particularly that of the immediate effectiveness of rellegs patch, to be false. In the
resulting figure 2.2, the public disclosure of the vulneligband patch are released at the
same time. However the vulnerability could be disclosed ediately before a vendor can
release a patch, but according to Arbawgtal. this would make little difference as the
scripting of the exploit is the significant factor. For a diethdiscussion about the different
types of disclosure refer to sections 4.1 and 4.2.

e Browneet al. [44] found that the number of reported intrusions can be riedevith the
formulaC = I + S x vV M whereC' is the cumulative count of incidents/ is the time
from the beginning of the exploit cycle arddt- S are the regression coefficients to fit the

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 15

curve to the specific incident. Thus, we know that the spikexiploitations will level off
and tend towards a constant over time.

e Eschelbeck’s [8] empirical data showed that the number ¢ierable machines had a
half-life, which was 19 days in 2005, i.e. after 19 days thmbar of vulnerable machines
halved. This data could explain why the increase in intmsidiscovered by Arbaugét
al. levels off in the curve discovered by Browgeeal.

e Eschelbeck [8] also discovered that most exploits are aviglbefore the end of the first
half-life period of vulnerable machines. This is represerit the diagram by the scripted
exploit being released before the first half-life.

e Browneet al. [44] discuss the dropping off in the number of intrusions wiiee vul-
nerability becomes passe. The number of intrusions woutddrap off like that if the
vulnerability had died (i.e. there were an insignificant tn@mof vulnerable machines).
However, both Eschelbeck’s [8] and Browaeal’s empirical data show that there may
be repeated spikes in intrusion activity at a later dateh&beck hypothesises that this is
because of new unpatched machines being deployed whidtiedy gives some vulner-
abilities a near infinite life span. In addition, if anoth&eat were to occur which would
publicise the vulnerability (most notably a worm), anotpike may occur. Thus, the
death of a vulnerability is rarely observer, and the drominuisions will most likely be
due to the vulnerability becoming passe. However, therdtis Empirical date for this
drop-off and is drawn as a steep curve, but this is not backdmyempirical findings.

e The small increase in intrusions between discovery andadisee follows an exponential
increase as a select group of Black Hats exploit the vulnl@saleither because they dis-
covered the vulnerability on their own, or because the valbidity was being exploited
in the wild. There is no empirical evidence to support thswaver if a small group of
black hats is slowly disseminating the information in a colieéd manner to prevent mass
proliferation and possible detection, it would make senséhis to grow exponentially, in-
creasing faster as more people discover the exploit anth&tlsmall group of associates.

This appears to be as complete an image of the most commoerabitity life cycle. The most
disturbing part of this life-cycle is the large number ofrugions that appear to occur well after
the release of a patch. The trends discussed below willdurdiscuss this life-cycle and in
particular highlight aspects of vulnerability, exploitcapatch discovery and creation that are
becoming more difficult to manage and justify the solutiand but in section 3.2.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 16

\ f

I\\ Vulnerable
'\ Machines
A .

Vulnerable
Machines

{

]

{

]

i

)

1

]

|

]

1

|

1

| :
i : : :

& ! . : : \

i : : :
|

|

1

|

{

i

{

]

i

]

{

)

|

]

|

]

Rate of
Exploitation :
Exploitation .

v

0,0 Time
Creation Disclosure/ Passe
Patch :

Discévery Popularisation/
Scripting of Exploit

Figure 2.2: Generalised Model of Empirical Findings

2.3 \Wulnerabilities, Malware and Exploitation Trends

The variables in security are a moving target. This sectidhewplain in which direction the
target is moving. A discussion of what the trends are andkbg/Ireasons for them is presented.
These trends are of use in situating any patch managemensdien in the reality of the security
landscape. In the context of this discussion, malware &xpipholes due to vulnerabilities
in software are discussed. Other attack vectors such asleinstant messaging and other
confidence tricks are outside the scope of this discussion.

2.3.1 Increasing number of vulnerabilities

The general consensus is that there is an increase in theemahtbulnerabilities. This is most
often due to the increasing complexity of software and tlueeiase in the number of software
projects [45]. According to the National Institute of Saenand Technology (NIST) [46], it
is estimated that Microsoft Windows 2000 contains 35 millimes of code as compared with

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 17

Windows 95’s 15 million estimated lines and Windows 3.1'sillion. Similarly RedHat Linux
7.1 had 30 million lines of code in 2001 up from 170 000 line&imux distributions of 1992.

It is estimated that that the number of software bugs ranges 6-20 per 1000 lines of code
[47]. Thus on these estimates it can be seen that the numipateftial bugs has grown im-
mensely, however not all of these bugs will result in segutdaws and it is difficult to make
these extrapolations. For example the Qmail mail servettemiby D.J. Bernstein has $500
available to anyone who can find a security vulnerabilitynia todé, this has been unclaimed
in 10 years; sendmail on the other hand has had a plethordredrabilities in its 20 years [48].
The 'rush to market’ attitude of many software vendors isilté®y in code with a higher number
of vulnerabilities per line, often with poor architectutest make them difficult to secure post-
completion [49]. In addition, this increasingly complexXtsa@re is increasingly interacting with
other complex software. The low cost of communication olieriternet and its ubiquitous na-
ture is replacing other means of electronic communicatipening systems not designed for the
internet up to new vulnerabilities and creating unforesaerations between system interactions
[8]. Even if vendors do provide the ability to lock down thsaftware, it is often not distributed
in a secured state; couple this with a lack of security kndggeamong system administrators,
and a security industry that is woefully understaffed aredrfason for many of the preventable
configuration errors becomes clear.

The most commonly quoted statistics of the increasing numobeulnerabilities come from the
Computer Emergency Response Team/Coordination Centi@T(LE), who compile statistics
for each quarter [50]. These statistics are taken from thar@on Vulnerabilities Exposure list
which assigns a common name to every discovered vulndgsabilhese statistics show that the
number of vulnerabilities are increasing each year. Theavtiron the number of vulnerabili-
ties each year follows an almost exponential upward trexcep for 2003 where the number
dropped to 2000’s levels. This could possibly be becausaefibt.com crash and the result-
ing decrease in technology related work which lead to lessevability research, although this
is unconfirmed. In the first two quarters of 2005 the upsurgdrasnatic with the number of
vulnerabilities averaging 15 a day compared to the previogk in 2002 of 11 a day . How-
ever, the number of vulnerabilities reported by differeminerability databases is not consistent.
The Open Source Vulnerability Databaseatturllackeras2@83 to 3888 reported vulnerabilities
[51]. In addition the Secunia vulnerability database [5@% Ishown a rise from approximately
3190 vulnerabilities in 2004 to 4120 in 2005 which is coresistwith CVE's rise.

2Barring Denial of Service or unreasonable exploitatioruregments.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 18

As long as the preconditions mentioned above hold trueetisdittle reason for these numbers
to stop their upward trend. Discussing the seriousnessesktirulnerabilities, Eschelbeck [7]
makes two hypotheses: there is a constant discovery of ngeatrulnerabilities, this leads to
a situation where half of the most common and critical vudbdities are replaced every year
and; these vulnerabilities often have an infinite lifespaa tb the continual deployment and re-
deployment of machines with unpatched software. Thus vabikties have a cumulative effect,
where the marginal discovery of vulnerabilities is inciegsand the total number of critical
vulnerabilities are increasing as previous vulnerab#itire not being successfully mitigated.

2.3.2 Increasing number of attacks

The number of increasing vulnerabilities has predictaddylito an increase in both the number of
attacks and the number of successful attacks. Howeveisthisomplicated statistic to measure
for several reasons. To monitor attack trends some statias to the number of attacks need to
be collected. However, many attacks are not detected aedsadhe detected by are not reported.
Gathering statistics is a non-trivial task; first, if an ak@goes undetected, then quite obviously
it cannot be counted, and second, reporting is driven by ittervand many organisations who
are attacked are either reluctant to report them [53] follipiypreasons, or administrators have
dealt with the vulnerabilities and lose interest [44]. Iddidn, it is difficult to get organisations
to allow outside entities to monitor their network [53]. Aheanative would be to conduct
penetration tests and note the number of reported intrasidowever, this provides an difficult
dichotomy where on one hand it is illegal to attack sites @autiprior consent but, prior warning
would influence the site’s reporting rate. Worse still, thisrevidence that attackers are moving
away from using mass compromises and focusing on more ¢&argebjan and rootkit installs
which provides more manageable results and helps to evaeietida [16]. The Hacker Defender
anti-detection service provide a service where a semiugigrsion of their Hacker Defender
rootkit can be bought and used in a “pointed attack” spedickesigned to avoid detection by
anti-virus software by reducing the chances of the antissresearchers from crafting a general
detection signature for the rootkit and providing many ueigersion [18].

This leaves two possibilities for estimating attack atgivilhe first approach was taken by the
CERT/CC, sites were asked to confidentially report incisertiowever, this approach was ini-
tially difficult with estimates for the number of incidents 1995 ranging from 1200 to 22800

3an incident could be made up of several attacks

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 19

[54], and was eventually discontinued in 2004 as incidemievgo widespread that they “provide
little information with regard to assessing the scope angkich of attacks [50].” The alternative
approach taken by the SANS Internet Storm Center and thé#tPID [55] project is to receive
submissions on network activity from distributed sites aedorm central analysis of the data.
This allows the number of attacks to be better modelled, keniedoes not provide information
as to how many of those attacks are successful, unless assfidcattack displays some obvi-
ous behaviour, this is often true of worm activity but not aiian exploitation. Some of the
resulting noise from attacks can be used to perform a baattes@nalysis, this is particularly ef-
fective for Denial of Service attacks [56]. However diffitiilis to model attack trends, research
tends to agree that the number of attacks and incidents eneaising every year [54, 57]. Given
the increasing number of vulnerabilities it is hypothegig®t this will lead to a higher number
of successful attacks. Indeed, this hypothesis is borndwtihe continuing success of auto-
mated self-propagating malware (worms) and their contragivity even after a patch has been
available for several months [8]. This is further corroltedaby DSHIELD which has seen the
average time between attacks drop below five minutes in bagust 2005 and September 2005.
Thistime to liveor survivability statistic gives an unpatched machine less time till it is jprom
mised than it would take to download and deploy the necegsdohes [58]. It is clear, however
that not enough public research is being conducted in tlareglysis. If the security community
had more information on what was occurring in 'the undergbdess coarse assumptions of
worse case scenarios would be possible.

There are several reasons as to why the number of attackscaeasing. CERT/CC identifies an
additional six trends, three of which are relevant [59]:

1. The increased automation in attack tools has lead torfastemore widespread exploita-
tion due to several advancements. Advanced scanning tpasare regularly employed,
for examplescanrand can portscan a network in record tirf@®], while nmap can de-
ploy a variety of stealthy scanning techniques. The rele&s&ploit code has historically
heralded the advance of script kiddigeowever running and managing these exploits is
becoming even easier with tools suchnastasploit, which allow for point and click ex-
ploitation and provide a toolkit with which future exploian be rapidly developed. When

“ht t p: / / FI NDOUT/

Shttp://insecure. org/

6Less experienced cracker who use tools provided by moreiexped authors to break into systems.
"http:// metasploit.org/

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 20

the advanced scanning is coupled with automated explmitéiti tools such adutoScaf)
an entire network block can be stealthily scanned and tiyvexploited if the discovered
systems are vulnerable. This exploitation often has thktyalbd propagate allowing a
malware creator to compromise several hosts without muasiviement, and has proved
particularly successful among the most vulnerable, honeesusrhis has provided an in-
crease in the coordination of distributed attack toolgveilhg large bot nets to be used in
massive distributed malicious activity.

2. Attack tools are becoming increasingly sophisticateti@mplex. This is making attack
detection and prevention increasingly difficult. This sisgibation is being packaged in
modular code and redistributed. This makes it possible fefaively inexperienced user
to launch a highly sophisticated attack utilising a rangeliffficult to detect payloads,
ranging from reverse shells to DLL uploaded ssh server$ thié metasploit framework.
In addition, the modularity of these tools allows differem¢thods to be recombined and
reused, which makes detecting a defined set of steps mouttifiThus malware authors
can rapidly create several different iterations of onegigfanalware in an attempt to avoid
detection by anti-virus software [16].

3. Increased permeability of firewalls. The advent of HTTRhesdominant protocol has
caused a shift where services are no longer differentiatgublt, but are multiplexed over
one port with protocols built on top of HTTP. For example aogie e-mail filtering poli-
cies become meaningless to users utilising web based eseraices such as Gmail or
Hotmail. The threats these services can introduce lead henllitary into blocking ac-
cess to web-mail products on their unclassified networkg [Ghe rise of services such
as instant messaging and e-mail move much of the contentotaleicision making from
the firewall, to the end-user. Attackers have recognisesdahd now employ a variety of
attacks which exploit trust in the end-user using confidericks [16]. Phishing, pharm-
ing, mistyped domain squatting, spreading via e-mail otainsmessage are all examples
that 'trick’ the user. There is no need to look for a vulneligpin a firewall when you
can instant message a trojan to several users. Moreoveilendewices and portable stor-
age now allow malware to piggy back its way through a firewallthe sneaker-nt It
is very difficult to control every laptop, USB flash-stickgdal camera, MP3 player and
memory card that comes near a network. This can render midiiees one of the most

8htt p://aut oscan.free.fr/
9The sneaker net refers to the manual networking broughttadyopeople physically walking devices from one
place to another.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 21

common infection vectors for an organisation. This hasnalb attackers many more tar-
gets; no longer are only internet facing servers vulneradteattacker could potentially
compromise any machine in the organisation, particularty-eser desktops.

2.3.3 Exploit window shrinking

The time between the release or announcement of a vulnigyait the release of public exploit
code is known as the exploit window. This statistic is widedgorted and agreed upon by many
researchers [44, 2, 7, 59, 17, 16, 62]. Indeed, the eviderems to agree; the Nimda worm
appeared a year after the vulnerability had been annoutite QL Slammer worm appeared
after six months, Slapper took six weeks, Blaster halvetltth#éhree weeks, Sasser took two
weeks, Zotob appeared after five days and the fastest vbitigrao worm cycle to date has
been the Witty worm which appeared 36 hours after the vubi#gawas announced [63, 64].

The time from the disclosure of the vulnerability until tredaase of a scripted exploit, the win-
dow of exploitation, is the most significant indicator of wireevulnerability has progressed from
a theoretical discussion to both a likely to occur and likelpe successful attack. A quick look
at the exploit window for previous worms shows that the ekplindow appears to be shrinking.
This hypothesis is confirmed by several sources [62, 8, Bhddition the exploit window ap-
pears to be shrinking faster than the remediation windowowerful example of this reduction
is the emergence and growth of 0-Day(Zero Day) exploits. {Enen 'Zero Day’ traditionally
refers to an exploit for an undisclosed vulnerability, iincreasingly used to refer to scripted
exploits released on the same day as the vulnerability veatodied. In both situations the exploit
window is but a few hours.

CERT/CC hypothesises [53] that underground groups couldrivately hoarding exploit tools
which could be made public immediately when a vulnerabisityeleased, thus skewing the time
from public disclosure of a vulnerability until public dissure of an exploit. However the most
likely reason as to why the exploit window is shrinking is anorease in sophistication of exploit
development tools [59, 53]. Some of these advances are:

1. The metasploit framework provides templates for manylmoations of exploits types,
payloads and target operating systems. An exploit can bdlyageated by utilising the
metasploit framework which reduces the amount of efforunel in development and
provides access to a far greater range of sophisticatedudsyl

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 22

2. The increase in abuse of web applications makes exploélolement quite easy [65].
Vulnerable software can be easily found through searchnesdi66], the source code is
easily available allowing an attacker to find vulneral@btfaster and often exploitation just
requires a simple request. The requests can be rapidlyapmekivith tool such as the Perl
LWP module or Metasploit.

3. Itis becoming increasingly easy to reverse-engine@hgatto find and exploit the vulner-
ability they are supposed to repair. In a recent demongirdtie MS05-025 patch from
Microsoft was reverse-engineered in twenty minutes [6/isTapid turnaround means
that it should be assumed an exploit exists a few hours aftatch is released.

4. The re-use and modularity of existing malware. This idipalarly true of worms and
bots. There are several propagation methods from massm#al exploitation which a
worm author can pick and choose. In addition modifying exgstvorms to utilise new
exploitation techniques or incorporate new payloads i®é&sier than writing a new one.
The number of variants of the more popular worms such as SolaeBagle are a testimony
to this [64].

All of these advances contribute to making exploit develeptreasier and faster, and future
advances will only reduce this window.

2.4 Problems with Patches

The vulnerability cycle described in figure 2.1 above assuinat the number of intrusions would
start to decrease after the release of a correction or paiais. decrease should continue until
the number of vulnerable machines reaches some negligahle and the vulnerability reaches
the last stage of its cycle. However, both Eschelbeck [8]Bmmavneet al’s [44] research shows
this is not the case. A large number of notable worms withenl#ist few years have exploited
vulnerabilities for which a patch already exists. In additithere are cyclical re-infections in the
long-term resulting in an infinite vulnerability life-cye[8, 44]. This demonstrates that patches
are not being deployed to a large number of machines, andhéofetw that are, with half the
most prevalent vulnerabilities being replaced every y8hithe patch treadmill is here to stay. In
some cases the notification of vendors has been poor ancegdiakie gone uninstalled because
administrators either didn't realise there was a patch dn’tlrealise its importance. However,

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 23

even when there is ample notification research by Resco8sltowed that in the case of a
critical vulnerability in software more likely to be patah€OpenSSL), after two weeks 60% of
vulnerable servers were still unpatched. Anecdotal evidgoints to a variety of problems with

patches that prevent them from being rapidly and regulaglyla/ed [39]. Solutions to these

problems and others are provided in the next three chap@rapter 3 describes how users of
software can best manage patches coming from vendors,echhplescribes how vendors can
best prevent the sorts of problems described below and eh&ptescribes technical solutions
that can be used to ease the process.

2.4.1 Unpredictable Patches

A security patch should remove or mitigate a vulnerability,more and no less. However, this
does not always happen. Patches sometimes break the dbeycare supposed to repair, intro-
duce changes that break compatibility and interopergpéldd new unwanted features, introduce
new vulnerabilities, re-introduce old vulnerabilities or some cases, fail to repair the original
vulnerability [2]. When there is a problem with a patch theder usually re-releases it. This
brings its own set of problems such as removing and replatiadgaulty patch and duplicat-
ing patch downtime and effort. There are numerous exampléautty patches, and plenty of
anecdotal evidence available on various support forumsakenadministrators wary of faulty
patches. The cost of applying a patch is increasingly bettelerstood, however the costs of
potential patch failures weighed against the costs of nplyapy a patch is a risk trade-off many
are ill equipped to make. According to Beataeal. this skews the risk analysis towards not
applying a patch [2], establishing a situation where adstiators are reluctant to apply patches
for fear of creating a problem worse than that presented éyptiginal vulnerability.

Some vendors choose to provide specific patches allowingdmihistrator to limit the change
introduced be a patch, by providing a specific patch for aiipassue. The Debian security
team even goes so far as back-porting security fixes to thex @thble’ software version. This
can create problems with multiple patches over time. Sonmehpa deprecate or depend on
other patches, without careful planning and an intelligesich tracking scheme these inter-
dependencies can result in undefined results. To avoidttlEsalso useful to provide cumula-
tive patches which contain multiple past patches, with titeridependencies pre-computed and
tested, to ease bringing a newly deployed software instajpxte-date with its patches. However,
some vendors find implementing proper patch tracking diffiand opt for cumulative patches

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 24

only, thus maximising the change administrators make tio $yetems and increasing the chance
of a patch breaking something. The lesson to vendors hemnes keep patches specific and
effective.

Section 2.4.6.1 provides a good example of how a patch caseaswanted results.

2.4.2 Too Many Patches

As the number of vulnerabilities announced each year growpe do the number of corre-
sponding patches. Each patch requires a significant amduwvarét before it can be deployed
and forgotten about. The full process is discussed in ch&t&he amount of time required to
discover patches, research their related vulnerabibst, the patches and then make risk man-
agement decisions far exceeds the time provided by thekshgiexploit window. Worse still,
the exploit window is shrinking faster than the remediatigdle. There are several inefficiencies
in the remediation cycle which exacerbate the problem.

Often patches are released by multiple vendors via diffareschanisms which can make mon-
itoring for and installing patches involve a large duplicatof effort and thwart organisational

centralised patch distribution programmes. For examglesaof Microsoft Windows and Adobe

Acrobat will need to integrate both Microsoft and Adobe’sgbedistribution infrastructures.

The unstable nature of patches requires that an orgamsaéidorm thorough testing of each
patch. However, particularly for large organisations witany machine and software config-
urations duplicating every relevant configuration andraxdt@on between critical applications
can prove arduous. When this process is applied acrossas@atches it can quickly become
untenable.

Vulnerabilities in libraries on which many applicationgp@ad can require that each version of
the vulnerable library is patched. This can create a stnatihere sometimes one vulnerabil-
ity requires several patches from several different saftwendors. This combines the above
two problems to create a situation where both the problemuifipte distribution methods and
complex testing lead to a deployment cycle which far excéeelsvindow in which attackers are
most active. This is demonstrated below in the GDI+ JPEGanalnility discussed in section
2.4.6.2.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 25

2.4.3 Window to Patch is Shrinking

As the window from vulnerability to exploit deceases (déssxl in section 2.3.3) so too does
the windows of time available for patching. The vulnerabilife-cycle described in section 2.2
showed that the scripting of the exploit was the significactdr in any increase of intrusions.
Thus, for an administrator to avoid a significant level oaekis the patch or mitigation should
be deployed and working before the release of the exploithércase of the Witty worm [38],
the exploit was released just thirty six hours after the ameement of the vulnerability. This
is not enough time to perform even basic vulnerability assests and patch deployments, let
alone provide significant testing on the patch, a crucigd steavoid the problems with unstable
patches. In some cases this may not be enough time to noéfg aad have them download the
patch.

The shrinking of the vulnerability to exploit window is ndtd only factor in the decreasing
patch window. While the scripting of the exploit leads to gndiicant increase in attacks, this
is not to say there are not attacks before this time. When aioiexs scripted it becomes
available to a large group of people, often termed scriptlies, who do not have the skill, or
money to buy the skill, to write an exploit themselves. Failrg this logic, the largest threat of
potential attack before the scripting of an exploit are theug of people with skills or money.
So, while an organisation may not yet be at threat from autedhaorms wreaking havoc it may
be vulnerable to other activities such as corporate esg@mnas security threats on the internet
becomes increasingly criminalised, the threat from sutethks increases. Unfortunately there is
very little public research into the activities of skilletlaeckers and the trends surrounding their
activities. However, when a serious vulnerability is armoed there is usually a large increase
in activity on the vulnerable port as detected by orgaresatsuch as DSHIELD [55]. Ideally a
patch or mitigation should be deployed before this time &vent possible attacks in the future.

The vulnerability and exploitation trends discussed inpghevious section shows that the ad-
ministrator does not have the luxury of time. Thus, and urfootaible trade-off exists with two
conflicting pressures when timing the application of a pa&cpressure to wait for the patch to
be tested by the community to prevent the problems of urestadtiches and a pressure to patch
immediately to prevent exploitation.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 26

2.4.4 Complex Patches

Not every patch is simple to deploy. While research is beingipto creating easy to install
and distribute patch packages [69, 70], the complexitiesoftfivare interconnectedness often
manifests itself. Programmers often use functionalityvted by shared libraries to prevent
having to reinvent the wheel and minimise the size of theiliaptions. The result of this is that
applications often have several dependencies. Thus, ibbtiee core dependencies is patched,
this could potentially affect every application dependamgit. Additionally, some applications
may depend on different versions of another applicatiogquireng several versions of a library
to be installed.

However, dependencies don’t apply only to applications;hes too, often have their own de-
pendency hierarchy. Sometimes one patch may be requireditstalled before another. This is
not always a strict dependency, for example in the case afentgpatch against a vulnerability
in Windows Meta Files [71] an unofficial patch was providediluklicrosoft could release an
official patch. There was no specific patch dependency tregatth could be deployed without
affecting the other, however if the unofficial patch was reatbbefore the official patch was
installed, the machine would be left vulnerable for the peof time in between. Thus it was
necessary for an administrator to first install the officialgh then remove the unofficial one, a
rather unintuitive process.

The examples provided in section 2.4.6 both demonstragédépendency hell’ quite well.

2.4.5 Hard to obtain patches

The problems with patches are not always in the deploymextting hold of them in the first

place can sometimes be problematic. There are many reasgnthis could happen, although
this is becoming rarer as software vendors become aware ainjportance of patching. There-
fore, many of the problematic patch deliveries are occgruithin smaller software products
and companies who do not have a defined patch release and enagragpolicy. Some of the
problems faced are:

1. Poor notification. After the bitterly fought full-disdare debate the notification of vul-
nerabilities and their corresponding patches has greatbyaved. However not everyone

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 27

has cottoned on. For example a flaw in Google’s on-line maght| Gmail, disclosed on

Oct 14th 2005 and patched four days later was never publadp@vliedged by Google
[72]. While Google did not need to distribute a patch, it il slisturbing that such a

large software vendor believes it does not need to notifyoaayof the flaw and its fix.

Other examples often include open-source software preducich have a brief entry of
an undisclosed security vulnerability in the Change Lodheflatest release [73]. Without
obvious disclosure of the vulnerability and correspondirgusers are likely to stick to

older versions for longer if there is no other significans@ato upgrade.

2. Unregistered software. Some vendors will only issuehesido software holders with a
valid and verifiable license. This is problematic for twoseas. The first is that organ-
isations with legitimate licenses may have too many masharea unique configuration
which makes registering each machine difficult. The seceritiat users of pirated soft-
ware (which in the case of Microsoft products is no small migp while they shouldn’t
benefit from their unethical behaviour, can impact legitenasers of the software if their
software were to become infected with self-propagatingvaee that affected shared net-
working resources because they could not patch their sodtvdicrosoft flirted with this
idea with their 'Genuine Advantage’ program [74] but sodleméed and have made secu-
rity patches available. However, other proprietary vesdmch as Solaris and Oracle still
require the purchase of a support contract or some otherdbwxmrification [75, 76].

3. Limited bandwidth. Some users and organisations eithertal ineffective telecoms regu-
lations, limited network infrastructure or limited fundstivwhich to purchase bandwidth
or a combination of these may not have enough bandwidth at disposal to rapidly
download patches. Much of the patch management effort lesreesl access to broad-
band connectivity. In bandwidth starved countries suchaglBSAfrica and other emerg-
ing information economies (Brazil, India etc.) where mamal organisations have only
an expensive dial-up or ISDN line, spending several houventttading security patches
is not a suitable solution and often results in patches jasbeing applied. The corol-
lary of this is that it is unlikely their machines would parpate in any large scale worm
propagation outside of their organisation, a bitter-sweatsolation for the administrators
performing the local mop-up operation.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 28

2.4.6 Problem Patch Examples

Some of the potential problems patches can create are hess$tated by examples. Two such
'problem patches’ are discussed below. The first demomsttadw a patch can fail to effectively

fix a vulnerability, re-introduce a vulnerability or confliwith existing software. The second

demonstrates how difficult it can be to discover which agians are vulnerable and ensure all
traces of a vulnerability are patched.

2.4.6.1 SQL Slammer/Sapphire Worm

On July 24, 2002 Microsoft released the MS02-039 [77] patchSIQL 2000 Server and Mi-
crosoft Desktop Engine 2000 (MSDE) which patched critia#fdr overflows. The overflows
could be triggered by sending trivially small UDP packetptot 1434. One day over 6 months
later, the SQL Slammer or Sapphire worm was released in &8#6LDP packet. According to
an analysis by the Cooperative Association for InterneaDfatalysis (CAIDA) [78] the worm
infected at least 75 000 hosts. Moa@teal. [78] had this to say about its spread:

In the first minute, the infected population doubled in sizerg 8.5 (1) sec-
onds. The worm achieved its full scanning rate (over 55 omliscans per second)
after approximately three minutes, after which the rateroiugh slowed down some-
what because significant portions of the network did not leaeugh bandwidth to
allow it to operate unhindered. Most vulnerable machinesewdected within 10-
minutes of the worm’s release. Although worms with this dapropagation had
been predicted on theoretical grounds, the spread of Sappitvides the first real
incident demonstrating the capabilities of a high-speedhwdy comparison, it was
two orders magnitude faster than the Code Red worm, whi@tietl over 359,000
hosts on July 19th, 2001. In comparison, the Code Red wornulatpn had a
leisurely doubling time of about 37 minutes.

The only hindrance to the worm appeared to be its own effegtigs. It managed to infect a
huge number of machines, even though the patch had beesedlaaignificant amount of time
earlier. The time-line of the patch possibly shows why so fi@sts had been patched 6 months
later.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 29

The vulnerable library patched by MS02-039 was ssnetlidatier Microsoft released further
patches for SQL Server. On August 14 they released MS02-T8]3xnhich contained the same
version of ssnetlib.dll as MS02-039. On October 2 they seddVIS02-056 [80] which included
a newer version of ssnetlib.dll. On October 16, Microsoleéased a cumulative patch, MS02-
061 [81] which contained all changed applied by MS02-{033,056}. However, on October
30 Microsoft released a security hotfix Q317748 [82] to fix adia leak in SQL Server 2000
Service Pack 2. The hotfix contained a version of ssnetliletfased previous to MS02-039’s
version, thus reverting the fixes made in MS02-{039,043}@58 MS02-061, and reintroducing
the vulnerability [83]. Thus, a fully patched system was navinerable to several previously
fixed vulnerabilities. In addition, the precedence of patcivas unclear, and users were unsure as
to whether the patch should be installed and then the hotfixcerversa. Microsoft re-released
the hotfix with a corrected version of ssnetlib.dll and reased MS02-061 [81] to include the
hotfix on October 30. However, the worm only hit 3 months latenich should be enough
time for a significant number of machines to be patched. Ttle dé patching could have been
because notification of the problems Microsoft repairedewet widely disseminated, leaving
many machines vulnerable. Particularly given the wideusidn of the MSDE in third party
applications, resulting in many non-security consciousr'asmachines being infected. Russ
Cooper, editor of NTBugTraq only posted his understandirth® changes on January 28 after
the worm had hit [83].

On January 20 Microsoft released SQL Server Service Pack3)(B4] which contained a
significant number of changes, including an up-to-dateiopref ssnetlib.dll. Given the large
number of changes, regression testing on Service Packdteamtake significantly longer than
the testing required for smaller patches. Of the few who digdlay SP3, it was found that
there was a conflict with Best Software’s MAS 500 accountiagkage which required users
to reformat their machines. Currently Best Software onlyiftes their software to work with
patches up until MS04-021 [85], indicating the difficultyrthparty vendors and consumers face
in avoiding conflicts from patches. Thus, when the worm hé thays later at 5:30 on a Saturday
morning (UTC) [78] many administrators either thought tiaare patched and were still testing
SP3. Of the many organisations crippled by the worm, Micitosas one [86], indicating that
even they had found the patch soup surrounding the wormuliftic manage.

It should be noted that it is unlikely that all patches wilbpide this many problems, Slammer
was a particularly bad example that allowed for a conciseatestnation of some of the problems
related to patching. The fiasco surrounding Slammer demagastthat patching is not always

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 30

straight forward. Often several versions of a patch exiats must be applied in a specific
manner. Sometimes those patches fail to remediate therabiiiey or expose an organisation
to new vulnerability (or re-open old ones). Also, patches ot guaranteed to be compatible
with every specific configuration and application and a digant amount of testing is required
before they can be deployed.

2.4.6.2 GDI+ JPEG Vulnerability

On September 14 2004 Microsoft released MS04-028 [87] wihestribed a vulnerability in the
way the GDI+ library processed JPEG files. Thus an attackddawaft a malicious JPEG file
that could execute code on a victim’s machine. This type tfemability is particularly danger-
ous as many users and applications don’t associate piasrpstentially malicious and often
view or process them without thinking or confirmation. Foaewle, Google’s Desktop Search
application automatically indexes images, which couldger the vulnerability if a malicious
JPEG is indexed, without user interaction [88]. In additieiewing JPEGs is supported by a
large number of applications creating a very large attadtore Thus the risks were such that
administrators should expedite deploying the patch.

Deploying the patch was, however, a non-trivial task. Thd-&library (gdiplus.dll) can be run
side by side with other versions of the library [89]. The ubiqus nature of JPEGs and the
resulting number of affected applications, both Microswitl third-party, had their own versions
of gdiplus.dll installed. Thus, deploying the operatingteyn patch alone was not sufficient
to mitigate the vulnerability. For example even though thesion of gdiplus.dll bundled with
Windows XP Service Pack 2 was not vulnerable, an instatiadidVlicrosoft Office 2003 would
make it vulnerable. To help with this, on October 12 Micrasefeased the MS04-028 Enter-
prise Update Scanning Tool [87] which would scan for Micribspplications which contained
a vulnerable version of gdiplus.dll and update it. A necestask considering that Microsoft’s
advisory on the issue [87] lists over 50 Microsoft applioas which are vulnerable with links to
over 30 additional updates for individual software.

Even if an administrator managed to find and patch all vulrlerilicrosoft software, there were
still many third party applications vulnerable. To helpwthis a third-party tool was created
by Tom Liston of the Internet Storm Centre (ISC) [90] whiclasced for potentially vulnerable
versions of the DLL. This tool only helped in discovering netable applications, a user would
still have to get hold of a specific patch from that applicaBoendor.

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 31

Thus, to repair one vulnerability an administrator woukely have to run two separate scanning
applications and deploy a significant number of patches,otestmating how it is not always a
simple point-and-click case of one-vulnerability-ondgba The complexity of software and its
inter-dependencies is carried through into patching.

2.5 Conclusion

This chapter serves to provide an examination of the cupeniilems and trends that contribute
to the difficulty and need to manage patches and vulneraiilit-irst the life-cycle of vulner-
abilities was introduced and discussed. There has been megelrch into several aspects of
the vulnerability life-cycle, and the resulting life-cygcprovides significantly more insight into
the process than previous life-cycle’s have assumed. The woderstanding of the way in
which vulnerabilities are introduced, disclosed and reiated provides a platform from which
the trends and issues surrounding this cycle are discu§sabral problems and trends in vul-
nerabilities, malicious software and attacks were disedisk was shown that:

e The number of discovered vulnerabilities is increasingyyeatr.

e The number of attacks on those vulnerabilities and on olileuspatched vulnerabilities
is increasing.

e The release of a scripted exploit results in the largesesse in attack rate and the time
between the disclosure of a vulnerability and the releasesafipted exploit is decreasing.

Patching provides an effective method of finally remed@gtnvulnerability and can provide a
powerful defence against these trends. However, thesdgriempact the creating, release and
deployment of patches. In addition, patches have sevetfallpiof their own. These were
discussed and it was shown that:

e Patches do not always behave as expected and can sometaaks$tbngs instead of fixing
them

e The increasing number of vulnerabilities is resulting iniaorease in the number of
patches, which can often be overwhelming

CHAPTER 2. VULNERABILITY AND PATCH MANAGEMENT 32

e The decreasing vulnerability to exploit window results irsmaller window in which
patches need to be applied, however other problems witth@stare resulting in a de-
ployment time frame which exceeds this window

e Patches are not always straightforward to deploy, ofterctimeplexity of the underlying
software results in complicated installation procedures

e While vendors are improving, it is not always easy to get ldlpatches or notification of
their release.

These findings constitute a problem statement for which ehpatanagement programme must
provide solutions. Understanding these problems and tiagises allow a security professional
to design and implement policies, procedures and techiesldg respond to these threats. The
next chapter discusses how an organisation can do this dgrngmting an internal policy for re-
mediating vulnerabilities by patching. This discussiothisn expanded to include how a vendor
can best respond to these threats in the next chapter. \Eimathapter 5 advice on the technical
solutions available to improve patching and vulnerabiliiyigation are discussed.

Chapter 3

Policy Solutions

3.1 Introduction

In the previous chapter a discussion on the difficulties dacemanaging vulnerabilities and
dealing with patches was had. This provides a basis fromwttie advice on how best to
respond to this situation can be discussed in this chapter.

As the threats evolve and the vulnerability landscapeshsti too must patch management. The
trends described in Chapter 2 showed how patching is inoggsecessary and is a non-trivial
task that brings with it its own problems. The trends shoviadl the problems are getting bigger
and that there is less time in which to solve them. At the b@gis of this project we believed
that a software solution would be able to solve the intrieacif patch management. Resclora [4],
for example, believes that if automatic patching were moigely deployed the costs incurred
due to intrusions would decrease. However, later in the gaanagraph Resclora states “any
measures which improve the rate of patching [...] are likelypay off.” We soon realised
thatautomated patching not sufficient on its own to improve thrate of patchingdue to the
complexity and inherently fuzzy nature of managing patclé&sen the trends discussed in the
previous chapter, the speed at which patches can be deptoged of the most important issues
a patch management solution must provide. While the burdgratching can be eased with
effective tools, it cannot be completely managed by thencP@aanagement is a risk trade-off.
It requires information from many sources (asset managemetwork monitoring, vulnerability
lists, patch lists), and integrates with existing proceggek management, change management,

33

CHAPTER 3. POLICY SOLUTIONS 34

vulnerability management). A software tool may help intégégrthese process and centralise the
information-gathering efforts, but in the end someonedgsied to evaluate this information and
make a decision. Chan [91] and Schneier [41] both believiephi@h management is inherently
a technology problem, but that a sole focus on technologysisfficient. A quotation from the
ISO/IEC 17799 document states “The security that can besaedithrough technical means
is limited, and should be supported by appropriate manageared procedures.” [92] This
chapter follows this line of thought and focuses on the mansnt and procedures that can be
implemented to ensure that patch management and not just daployment can effectively
occur. To this end, a comprehensive patch management p®lieguired. An organisation must
have a process for managing patches and gathering relexvfanination to make an accurate
decision. To quote MacLeod [93]:

“Any organisation implementing a well though out patch ngeraent process is
on the right track to reducing its exposure and risk to phleltssecurity vulnerabili-
ties.”

This chapter details an organisational patch managemdioy famework. It describes a pro-
cess for effectively managing security patches within ayanisation with practical advice on
implementing such a policy.

3.2 Patch Management Policy

The rise in recent patch management research has resuléethige number of best practice
policy documents being released. The problem with exigbiolicies is that their focus is too
often only on a few elements of patch management. For exampéemight focus on asset man-
agement and decision making, while another might focus ploglang patches and the software
necessary to do so. What is lacking is an intelligent symsha&fsthe available information into
one body of knowledge. The recommendations and steps eateddrelow achieve this syn-
thesis, based on four such existing policies. The first isaty @aper on patch management
by Chan entitledEssentials of Patch Management Policy and Praci@t. The second is a
paper by Voldal [94] entitled\ Practical Methodology for Implementing a Patch Managemen
Process These two papers were the subject of an early iterationi@fbrk [95]. The third pa-
per is NIST’sPatch and Vulnerability Management Prograspecial publication 800-40 version

CHAPTER 3. POLICY SOLUTIONS 35

2.0 [46], by far the most comprehensive of the documentstly,&un Microsystem’sSolaris
Patch Management: Recommended Strategg@8itained valuable insight. These policies were
specifically chosen because of the depth and breadth aégyrahd ideas they presented. NIST’s
work is highly regarded and used to maintain federal systeithsstrict requirements and regula-
tory conditions. Sun’s document represents the thoughasarfye vendor, one of the first to start
discussing patch management. Voldal's paper is, at the dimeiting, the only best practices
paper on implementing a patch management policy availabla the SANS reading room
an excellent and well regarded resource for technologyegeibnals. While, Chan’s paper is
both well regarded in its own right and published by an inftissecurity organisation, @stake.
These policies form the basis of the work to follow, howeve tesult is greater than the sum
of its parts. Other documents are referenced when necesasdrthis researchers own insights
are added. Specific technologies will not be discussed abler a process oriented, technology
agnostic look at what needs to be done, whether automatedrmuah will be discussed.

The main aim of thigolicyis, as defined by Chan “to create a consistently configurenlamnv
ment that is secure against known vulnerabilities in oregatystem and application software”
[91]. However, the end goal of thidiscussionis to provide a reference for an organisation
looking to design and implement their own patch managemelitypfrom the ground up, or to
enhance an existing policy. This discussion falls undeuthbrella of best practice and provides
a utopian framework, as such it is not necessary for evergrosgtion to implement every step,
smaller organisations may combine several steps into anexample. While insight into all
aspect of managing patches in available, this section iseddawards an organisation looking
to manage its computing assets, rather than the home user.

3.2.1 Patch and Vulnerability Group

A policy is of little use without stakeholders assigned thgponsibility of managing and control-
ling its running and implementation. NIST recommends thaateh and vulnerability group be
established [46, pg VII]. The size, make-up and operatiothisfgroup can vary widely across
organisations. In smaller companies, and depending ondbuidignay be the additional respon-
sibility of a systems administrator, whereas in larger cames it could be a cross section of
relevant people from various departments, divisions onditas. The patch and vulnerability

http://rr.sans. org/

CHAPTER 3. POLICY SOLUTIONS 36

group will be responsible for gathering information, implenting the policy, reporting to man-
agement and disseminating relevant information acrossrnisation. The group should be
differentiated from a general security group, which if iis#%, should remain a separate group.
Patching is only as useful as the security of the organisafibere is no point expending a large
amount of effort on managing patches if all the machines amndaes have been left with poor
default configurations and no hardening effort has beenrelquk

It is recommended that the group be made up of system adnaitoist, network administrators,
security staff and IT support staff. The wide impact of patdmagement and need for integra-
tion with other security and policy systems requires a digegroup. This group should have
the support from top management, the authority to perfoeir tinctions [94]. The position of
the group within the organisational structure is specifieach organisation, although a group
that cuts across many departments would provide a bettegrstaghding of the organisations
configuration and provide someone to drive patching in eagfadment. The group could also
have subgroups which operate in different parts of the comp@/hatever the operation of the
group, having a centralised resource and a primary patctvalnerability management group
overseeing the whole organisation’s patching is essential

3.2.2 Security, Stability, Functionality Patches and Worlarounds

The policy outlined will deal primarily with security patek and workarounds for security issues.
A brief justification for this fact is that, the current diffilty in dealing with security patches is

the reason for implementing such a policy, as other typesatufiygs can be handled by and fall
within normal maintenance and upgrade change control sythemore detail, security patches
need to be installed more often, at least once a month anadl wibee regularly than that, regular

maintenance cycles are usually designed to be run less offaally annually. Security patches
are also more important, the risks of not patching (sufte@an intrusion) are far higher that

those faced by non-security patches. Additionally, théaltetion of security patches needs to be
expedited to deal with the unique risks security vulnerad introduce (see section 2.3). The
need for deployment speed is in contrast to the nature oftépes sequired during maintenance
such as adequate and thorough testing, which in the cas@&efaourity patches does not need to
be rushed, but may require certain trade-offs when depdoscurity patches. Security patches
are also less hard to not install, while other defences attingebetter, without an effective

workaround it is likely that most security patches will néede installed. Whereas non-security

CHAPTER 3. POLICY SOLUTIONS 37

patches can often be ignored if the problem has not maniféstelf, there is no guarantee that
an attacker will not try to exploit any available vulneratlyil Security workarounds fall into the
same category as security patches here, the changes iceecbdull still need to be tested and
the effectiveness and risks of the change must be lookediegdnmn the same manner that a
security patch would. Both security workarounds and patdfe/e more urgency attached to
their deployment. The only real difference is that the dstiion methods of workarounds and
patches may sometimes differ. A breakdown of the differgpé$ of patches and remediation is
provided in table 3.1.

CHAPTER 3. POLICY SOLUTIONS 38

e Security Patches

— installed more frequently
— higher risks of not patching
— unique requirements

— fewer alternatives

— needs to be deployed even for non-critical services
e Security Workarounds

— same requirements as a security patch

— usually easier to implement
o Stability Patches

— lower risks, threat already exists
— only required if corresponding stability problem exists

— is accommodated within normal maintenance cycles
¢ New Functionality/Features Patch

— low risk, threat does not exist
— only required if business needs dictate it

— Is accommodated within normal upgrade cycles

Table 3.1: Types of Patch and Remediation Summary

3.2.3 Policy

This meta-policy framework contains eight steps, eachrd®sg a step that should occur with-
ing the patch management policy implemented by the orgaoimsd&ach step has a wide range of
variables that will need to be tweaked and set to reasonabidards within the organisation and
relevant to the organisational and operational businestegb These are considered best prac-

CHAPTER 3. POLICY SOLUTIONS 39

tice guidelines for implementing a policy for managing sé@gyatches within an organisation.
A breakdown of each step is provided in table 3.2.

1. Information Gathering
5. Planning and Change Management

e Host and asset inventory e Proposed change
e Patch and vulnerability research e Contingency and back-out plans
e Exploit and threat research e Risk mitigation
e Patch monitoring and accep-
tance

2. Risk Assessment

e Patch and security threats 6. Patch Deployment and Installation
e Patch and security impact

e Automate where possible
e Assessment

e Secure patch distribution mech-
anism

3. Scheduling and Patching Strategy e Utilise technologies to speed
patch distribution

¢ Define patch schedules
e Minimise change 7. Verification and Reporting

_ e \erify patches were installed to
4. Testing all relevant machines

e Follow contingency plans if

i i ; tch is fault
e Mirror production environment patch Is taulty _
in test lab e Generate Metrics

e Check: patch authenticity, de- e Report and document progress
pendencies and requirements,
whether vulnerability is remedi-

ated, conflicts with other appli-
cations

o Create repeatable steps to verify o Analyse policy forimprovement
patch installation o Train staff

e Test back-out and undo steps

8. Maintenance

Table 3.2: Patch Management Policy Summary

CHAPTER 3. POLICY SOLUTIONS 40

3.2.3.1 Information Gathering

The information gathering phase is a required input for mglknformed and accurate decisions
and provide proper risk analysis. This is an ongoing phaaewiil have inputs from many of
the other steps and is the primary input into the risk managemphase.

Asset & Host Management For a patch management process to be effective you needwo kno
which machines are utilising your organisation’s netwarkat software they are running and
which previous patches (both security and functional) odiincations to the software have been
applied. This is necessary at the very least to figure outlwmachines are affected by which
vulnerabilities and hence require patching. Further mi@tiion is particularly useful in making
risk management decisions; the ability to anticipate tresjiibe effects of a vulnerability or patch

is invaluable for minimising disruption and cost while masing availability. This should not
be a once off process, but continuous to ensure detectioevohmachines entering the network.
To achieve this a passive method that does not require seftwade installed onto machines is
required, thus allowing the discovery of all new machines.

Typically the kind of information collected about each miaehshould include the system’s
hardware, operating system, application software, looatboth physical and logical), the per-
son responsible for its administration and its functiordé@iser machine, print server etc.). For
both the operating system and application software (ansilplgdirmware) details of the current
software version, all applied updates and patches shoutdltexted [94, 3]. While each policy
provides examples of various details that can be recordi&i['Blprovides the most comprehen-
sive list of possibly useful information [46, pg 2-4]. Fomgers, additional information such as
the services they have been authorised to run can be rec@4ied

Systems should then be grouped and assigned a criticalyianity level. Grouping should
be appropriate for the organisation and can be grouped amagiety of differentiators. While
NIST defines stringent criteria for grouping [96] Americaatéral resources the other policies
leave it entirely up to the organisation. Example groupiaugs

e according to departments

e the user base

CHAPTER 3. POLICY SOLUTIONS 41

e primary function

e managerial control.

These groups should then be given a priority rating. Vo&d@4] policy document recommends
classifying these groups into one of three priority levalshough they can be further broken

down:

e Mission critical. Machines providing services criticalttee business operation. e.g. Ama-
zon’s Web Servers

e Business critical. Machines providing important servittest can tolerate short breaks in
service. e.g. E-mail servers or machines that aren’t ugedtadurs

e Operational critical. Machines providing non-criticahgees. e.g print servers

Factors such as the importance of the server’s data and tisegoences of downtime should be
used when determining priority levels. Also the ease in Whiee machine can be rebuilt in the
event of an intrusion In addition, the vulnerability to aktaf the server should be noted and used
to modify it's priority; for example publicly accessible egtanes or high profile targets should be
given a higher priority [94, 46, pg 2-6]. It is important algotake note of system interconnects,
as a lower priority system may provide an attack route to adrigriority one, thus an internet
facing non-critical print server (a silly thing to do), waihot mission critical should have a
higher priority due to the increased risk of attack and pmbtsi for further compromise. This
classification will be useful in determining the seriousneta vulnerability and other actions
such as whether a patch should be installed immediately tor\Wahout this classification an
organisation may embark on costly patching and mitigatimegts that aren’t necessary, or
cause further avoidable problems [46]. The informationemdéd and determined here will be a
direct input into the risk management decisions descriaest.| The broad groups and the factors
influencing priority are summarised in table 3.3.

CHAPTER 3. POLICY SOLUTIONS 42

Broad Priority Groups Description
Mission Critical Services and machines the organisation could not contirtieu.
Business Critical Important services tolerant of some short downtime
Operations Critical Useful machines where downtime would be an inconvenienge
Differentiators

o Data sensitivity and criticality

Consequences of downtime

Difficulty of repair and restoration

System exposure - accessibility and vulnerability to &ttac

System’s interconnects - what access can this machinedadwiother services if com-
promised

Table 3.3: Factors influencing priority rating

Vulnerability and Patch Research An understanding of the effects of a patch and the prob-
lem the patch is trying to address is required. In the caseairgty patches this requires an
understanding of the vulnerability in the software being amd how the patch remediates this.

If the trends described in sections 2.3 and 2.4 are takenaio¢ount, then it is clear that an
administrator needs to know of relevant security patchesvainerabilities as soon as they are
released to minimise the effects of the shrinking time td@xpycle. In addition given the large
number of vulnerabilities and patches, some intelligeterfihg is required to limit the list to
relevant patches only, with patches for software not pitasehe organisation weeded out. This
can be achieved with software which provides filtering basedriteria such as the vulnerability
criticality and affected products. However, manual filtgris still preferable, although this is
not a dichotomy, and can be more easily managed via escalati@edures. The vulnerability
and patch notification should include what versions of thiéwsoe are affected, a criticality
rating of the vulnerability seriousness and what steps @maken as workarounds or stop-
gap measures. There are two factors which contribute torihieadity. The first is how easy
it is to perform an exploit, if it requires obscure user iatgion it would be less critical that a

CHAPTER 3. POLICY SOLUTIONS 43

vulnerability which can be exploited remotely without whdiredentials. The second is the impact
of the vulnerability, if the vulnerability results in a singpDoS that can be easily circumvented
then it would be less critical that one that provides arbjt@de execution in kernel space. In
addition, the effectiveness, stability and maturity of &hashould be determined. In particular
any conflicts with other software or configurations shouldnbéed, with conflicts specific to
the organisation made clear. Other indications such asutimdar of times previous versions of
the patch have been recalled and for what reasons, anygesitas provided by the vendor or
other users and any other special considerations the patghequire. This is important when
determining whether or not to deploy a patch underitleassessmerstep.

Notification can be minimally achieved by subscribing togkeurity notification and announce-
ment services of operating system and application vendaraddition public disclosure lists
such as BugTraqor Full Disclosuré can provide more comprehensive notification but at a
poorer signal to noise ratio. Vulnerability databases, @ndther hand, can help provide tar-
geted vulnerability announcements and comprehensivesxalthility coverage including links to
exploits, further discussion and threat analysis. Mailists and discussion groups are also a
useful resource, particularly for monitoring the effeetiess of a patch or better understanding
the implications of a vulnerability. NIST provides a comipeasive discussion and listing of
notification services [46]. A summary of the research gaaksted to patches and vulnerabilities
can be found in table 3.4.

’htt p: // ww. securityfocus. contf archive/ 1
Shttp://1ists.grok.org.uk/mailman/listinfo/full-disclosure

CHAPTER 3. POLICY SOLUTIONS 44

Vulnerability

1. Affected Software and Version

2. Vulnerability criticality/seriousness

(a) Ease of Exploitation

(b) Impact if Successfully Exploited
3. Workarounds and Stop-Gap measures
Patch

1. Software or Configuration Conflicts.
2. Number of, and Reason for, Patch Reissue
3. Vendor and End-User testing Notes

4. Special Considerations

Table 3.4: Patch and Vulnerability Detail Summary

Threat and Exploit Research While asset, patch and vulnerability notification helpsvite
an overview of the organisation, exploit and threat notiftcacan help provide an overview
of the security landscape. To use a crude analogy, if asgktenability and patch notification
provide an understanding of the vehicle, then threat antbéxtification provide an under-
standing of the terrain. The threats from patches themsglmeluding non-security patches,
come from possible faults with the patch which should be rd@teed while performing the
patch maturity and stability analysis described above.

Threat and exploit notification should provide knowledgewiat tools (exploits) are available

to aid an attacker in exploiting the vulnerabilities and efhihreats are currently know or likely

to attempt an exploit. While knowledge of vulnerabilitipgatches and workarounds is manda-
tory for any patch management policy, knowledge of explaitd threats is not. However, this

information allows for better risk management decisionsg¢anade, and in high risk situations

can be critical.

CHAPTER 3. POLICY SOLUTIONS 45

Unlike vulnerability and patch notification, threat and ipnotification is more difficult, with
few resources on the matter. Attackers are controlled byamuwhim and attack methods de-
velop fairly rapidly and usually in secret. For example, WSdocument was the only one to
discuss threat notification, but does so briefly without ptimg any direct threat notification
resources [46, pg 2-8]. Even if a comprehensive threat oatiin service existed, it would be
inherently crippled due to the difficulty in predicting thteactions, particularly human based
threats. This is not to say threat and exploit notificatiomas-existent, quite the contrary. There
are several public exploit clearing houses, honeypot ptejexamining attacks to discover at-
tacker's methods, internet telescopes analysing mabdiadfic looking for attacks and commer-
cial vendors, particularly anti-virus vendors receiviegdback from their software installed on
customer’s machines. However, the security communitytsikadge of the exploits and attack
methods traded in underground communities is still limitaad it should be assumed that an
exploit exists for every vulnerability. This is especiditye if a patch has been released; reverse
engineering of patches can allow for rapid exploit creaj®f]. Public exploit clearing houses
such as FrSIRY, milwOrm® and PacketStorfrshould also be monitored, and are particularly use-
ful for exploits released after the announcement of theenalbility or patch. Exploits released
with a vulnerability advisory are usually referenced in tnginal advisory or by vulnerability
databases. Information about how effective and easy tohgsexploit is should also be noted,
as sometimes crippled exploits are released, however taeskee rapidly improved.

The public release of a scripted exploit has been shown tite@n upsurge in attack activity[44]
(see figure 2.2). Knowing when this happens can change tlaeneders of the risk management
equation and indicate that patch deployment should be spedvonitoring services such as
DSHIELD’s Top 10 Targeted PortandPort Reportan provide insight into the size of potential
threats, and also provide an early warning system of cumempending attacks. For example
a recent spike in activity on port 1025 led the Internet St@emtre to issue a warning [97],
it was later discovered that the increase was due to theseeleithe Dasher worm [98] ex-
ploiting the Microsoft Distributed Transaction Coordioaservice described in MS05-051 [99].
While the reason for the increased attacks was only evidéert, ladministrators could have still
taken steps to mitigate the potential of an attack, or spequhtching of the MS05-051 related
patches. This process should be integrated with the orafoss own monitoring from a variety
of relevant local sources such as firewalls, web-servetisyans and intrusion detection system

“http://frsirt.org/ FI NDOUT
Shttp://m | wormcom
Shtt p: // packet st ornmsecurity. org/

CHAPTER 3. POLICY SOLUTIONS 46

logs, particularly if signatures exist with which orgartieas can detect known attacks. These
signatures can be anti-virus signatures with statistitisegad at the mail server or the intrusion
detection system’s logs, whichever are the most relevanmtss. Work by research groups such
as the Internet Storm Centre (ISC), CERT and malware reséavoratories (F-Secure, LURHQ
etc.) should also be monitored to discover the source ohpiatehreats. While these generally
only provide an overview of threats exploiting on a massesdals still useful to know whether
most attacks are coming from an automated worm, diversgogybscript kiddies or coordinated
criminal organisations. This should be augmented by annisgdon’s own threat source anal-
ysis which, for large organisations, often includes contgest. With these tools and resources,
information such as available attack and exploit tools,ftequency and scale of observed at-
tacks and the entities most likely to attempt an attack shbalresearched. Complacency due
to a lack of obvious mass attack activity is dangerous, adet gatwork does not preclude the
possibility of an intrusion. The risk from threats to higiefile and high-exposure targets such
as a large company’s web server should be considered higimgartunately none of the four
policies provide any discussion on threat management lokgliscovering available exploits. A
summary of the research goals related to threats and expgtovided in table 3.5.

The information gathered at this stage should be compilea useful forms (such as an in-
ternal advisory document) and distributed to relevantedtalders. This distribution can vary
and should be determined by each organisation. A detailesioreshould be compiled for use
within the patch and vulnerability group, as this will be dglbroughout the rest of the process.
In addition, some action can be taken at this early pre-psttde to reduce the risks of a threat
exploiting the vulnerability. Intrusion detection and iavitus signatures can be updated to de-
tect and prevent possible attacks and exploits, this isudgad further under defence in depth in
section 5.3.

CHAPTER 3. POLICY SOLUTIONS 47
Exploit

1. Availability (is it publicly available)
2. Effectiveness

3. Ease of Use
Threats

1. Observed Attacks Frequency and Scale
2. Entities Most Likely to Attempt an Attack

3. Profile of Vulnerable Machines

Table 3.5: Exploit and Threat Detail Summary

Automated tools can help when monitoring resources formédion about vulnerabilities, patches,
threats and exploits, particularly XML feed aggregatorsany of the resources discussed pro-
vide their topical information in an XML feed for easy synalion. A feed aggregator can
monitor these feeds and provide alerts when there is nevepbrnthese feeds can even be used
to syndicate the content from a mailing list. Many of the reses discussed above such as
vulnerability databases and exploit clearing houses gdefeeds updated with their latest con-
tent. While other resources such as the ISC and AV vendoxsdea regularly updated web log
(blog) detailing and discussing new threats.

3.2.3.2 Risk Assessment

This step’s primary concern is on deciding what the risks@néed by not patching are and to
allow these to be compared to the risk of applying a patchk Ri@nagement is a large field that
alone could fill several theses. This section does not aimtzighe a complete description of how
to implement a risk management process. Rather, the foouse specific aspects of managing
the risks of patching. Minimally, this step should allow agbang policy to answer the question:

“To patch or not to patch?” However, given that in the face eéaurity threat the decision will

usually be to patch, a mature risk management policy shdsddadlow better judgements about

CHAPTER 3. POLICY SOLUTIONS 48

whenand towhich systems a patch should be applied. Retrospective judgemsintld also
allow for improved risk mitigation in the long term.

There is a serious lack of discussion on patching risk manage within the reference docu-
ments, while each document does discuss the decision ohetietpatch or not, it is sometimes
inaccurate and often incomplete. For example Chan [91] menantioned the possibility of

choosing in favour of not installing a patch and the factbiest twvould lead to such a decision.
\oldal [94] touches briefly on risk management, but does noluide it as a step in the patch
management policy. NIST [46] spends more time discussiegptioblem and provides three
relevant factors (the description is paraphrased):

1. Threat Level - public and high profile servers are mordyike be attacked.
2. Risk of Compromise - the likelihood of a compromise ocagr

3. Consequence of Compromise - the end result of a succasstidion.

This is a strange list; they do not indicate that thweat levelshould be one of the primary inputs
intorisk of compromisgwvhereas theonsequence of compromigeuld not, they are either being
inconsistent or were not aware of specifics. In addition, TNé®ems to be breaking from their
earlier definition of the wordhreat(see 1.2.1)Sun’s document provides the best discussion out
of the four, but still only deals with a limited subset of issunamelyxostandavailability which,
while necessary, are not a sufficient enumeration of passimhsequences. The decrease in the
time available to patch, the increase in patches and thdgmmstsome patches have caused have
only recently highlighted the need for solid alternativesipplying a patch. This, coupled with
the high risks of not applying security patches may have ledle insufficient dealing with risk
management in the referenced policy documents. Howeveataking and patch management
matures, vendors have increasingly been providing alteegorkarounds. In addition, third
party technologies such as anti-virus, firewall and intrnsiletection systems have helped to
provide additional protections which can stave off patctafiation until the patch is considered
stable and tested. In searching for further work into thpdteh-or-not trade off, the patching
related risk management work by MacLeod [93] was found aulseference and is discussed
further.

This discussion will revolve around three important fastawhich make up risk; threat, vulner-
ability and, impact. The three factors making up risk aratre¢ly independent of each other.

CHAPTER 3. POLICY SOLUTIONS 49

This means it is possible for one of the threat, vulnerabditimpact levels to change without
influencing the other two factors directlyThis is in contrast to both the NIST and Sun policy.
The terms threat and vulnerability are used in a wider scepe than the rest of the document.
Their use above is specific to a security vulnerability arerthelated security threats. In this
context the risk of both applying and not applying a patchdatedmined, thus the threats and
vulnerability of applying and not applying a patch must beedained.

Risk Risk is defined by the equationisk = threat x vulnerability x impact [93, 100] . in
more detalil, risk is the probability of a threat succesgfakploiting a vulnerability and bringing
about the ensuing consequences [33]. Thus, as McLeod [@t&sstyou need to experience a
level of threat to a vulnerability and a significant impacbéD for the vulnerability to present
a significant risk.” For example a high profile target (e.gl2ibk) would always have high risk
levels because of both the increased probability that Itheilattacked, and the increased proba-
bility that a successful attack will have a large impact. tdwer, if it can reduce its vulnerability
surface it can reduce its risk. This definition appears tagyat discussing the risks of not apply-
ing a patch. If we discuss the risks of applying a patch, tlecepts such as the threat-source
become less obvious. In this case the threat source is thal @ettch, the vulnerability would be
the vulnerability to a system failure due to a faulty patcl #re impact would be the resulting
cost and downtime. Thus, this definition of risk can covehtstuations.

The following three factors discussed below; patch andrégdhreats, patch and security vul-
nerability, and consequences and impact, are inputs iskahie risk equation. Once they have
been determined, the risk of a decision can be determined@ngared.

Patch and Security Threats Threat has already been defined in section 1.2.1. For theo$ake
ease itis paraphrased as: an entity or adversary with trebddies, intentions, and attack meth-
ods to exploit a vulnerability in an asset. In the contextaxfigity patches, this entity is usually
malicious and could be anything from a curious teenagefgpstonal cracker, enemy govern-
ment or automated worm. At this point the threat researcim fstep one should be compared
with information such as the public profile of the vulnerafystems. For example a vulnerabil-
ity in the FBI's web servers is likely to attract a higher thréevel. This will allow the threat
level faced, while the patch remains undeployed, to be ghuge

“Although there is some influence. For example the impacttadding into a large financial organisation would
be large, which may contribute to the higher profile, and kéncreased threat level of the organisation.

CHAPTER 3. POLICY SOLUTIONS 50

The threats to systems and assets when deploying a patciffarerd and stem from possible
faults in the patch itself. These can manifest themselvesvariety of ways, from affecting
other systems and software negatively, re-introducinth@&rproblems or failing to perform the
function for which the patch was issued. This type of threaél is gauged from the research
performed into the maturity and stability of a patch duritepsone. For security patches the pos-
sible threats faced by deploying a patch usually pale inisigimce to the alternative, namely an
intrusion. With proper testing, regular backups and camefenitoring, the threats from patches
can be discovered, planned for and mitigated. An intrusioarbattacker on the other hand, de-
pending on skill and motivation, could be far more difficalidetect, cause far more damage and
be more difficult to repair. For example, if an attacker wersteal sensitive customer account
details the option of a quick restore from backup is not axdd.

However, whether choosing to patch or not, the threats fagett patching, will always apply.
As, even if the decision is made to patch, the organisatidirstili be vulnerable from the time
of public vulnerability disclosure until the patch is deyéad internally. This will be discussed
further under the scheduling step (section 3.2.3.3).

Patch and Security Vulnerability The level of vulnerability of an organisation to a particu-
lar threat can be calculated as the seriousness of the abifigr multiplied by the number of
vulnerable machines multiplied by the exposure of the walbke machines. The asset informa-
tion gathered in step one should allow every machine runthegulnerable service, software or
system to be determined. The seriousness of the vulndyadhlould not include the impacts of
successfully exploiting the vulnerability, but rather texeel of access required for the vulnerabil-
ity to be exploited and the ease of exploitation of the vidbdity. These should be determined
when performing the vulnerability research discussed abdvot all systems are likely to be
exploited, machines whose vulnerable service is publicdylable are more vulnerable to attack
than services while are only internally available. Howevrgernally available systems are still
more vulnerable than systems which disallow direct usezsg;decause if a threat penetrates the
organisation’s border, the vulnerability of internal mengs must be considered. Thus, a grade
of vulnerability should be applied to each vulnerable maehirhe grade would be tempered by
the ease of exploitation. The level of vulnerability of agamisation will then be a summation
of the vulnerability grade of the vulnerable machines.

The vulnerability of not applying a patch is different asdtdasier to calculate and easier to
minimise. As the patch is being installed by the organisatioe likelihood that the patch will be

CHAPTER 3. POLICY SOLUTIONS 51

installed to the relevant systems is near 100 percent. Hstispations of the machines exposure
are unnecessary and the vulnerability will be based on tmeben of machines which are to
receive the patch. As mentioned above, there is a window Irfevability before a patch is
deployed. This measurement can help to determine when tbk phaould be deployed and is
discussed further under the scheduling step.

Consequences & Impact Consequences are the result of a threat being successallged
against a vulnerability. These are the both the direct auneseces and indirect consequences.
Direct consequences include; cost of recovery, cleanuped@ployment, downtime and loss
of availability etc., which are usually only marginally inéinced by the specifics of the business.
Indirect consequences include; lost revenue, damagedateépuetc. and are business specific
effects of the direct consequences. Together these cogiseegi make up the impact the reali-
sation of a threat. For example, lost availability on a nuissiritical server will have a larger
impact than the same consequence on a less important server.

Calculating consequence consists of working out what thectsf the realisation of a threat
against the vulnerability would have. The two most obviomssequences are the costs of a par-
ticular action, the lost availability and the interruptitmoperations. It is difficult to determine
the consequences of an intrusion, as the extent to whicimtheler can compromise vulnerable
machines cannot be predicted. For example, an intruded comhpromise a machine and use the
access to snoop on an organisation’s activities, launadr atitacks or just disabled the machine.
It is equally difficult to predict the behaviour of a faultytph, which could disable a server,
re-open an old vulnerability or cause miscalculations itioad billing information. However,
more time is available to prevent and plan for patch failutesither of these situations (if the
attack/fault is detected) the server will have to be rebesulting in associated downtime and
varying costs to the organisation, both direct and indirect

To avoid the complications of enumerating all possible egugnces. The criticality and priority
of the vulnerable machines determined in step one shouldée 1o gauge the impact. If the
vulnerable machines are of higher criticality then the iotpaill be higher. This allows the
impact to be usefully abstracted.

The Australian Department of Commercdérgormation Security Risk Management [@bcu-
ment recommends assigning an impact level to one of the measlescribed in table 3] .
The impact levels are deliberately vague, as the specifieghat differentiates a catastrophic
from a major risk need to be specified per organisation.

CHAPTER 3. POLICY SOLUTIONS 52

Qualitative Measure | Description
Catastrophic Critical services and core business
operations would be threatened.
Major Effective service provision would be threatened
and require top management intervention.
Moderate Core services would function, but an
organisational review or procedure change
may occur.
Minor Some services would suffer, but
not fail. It could be dealt with internally.
Insignificant Routine operations and
maintenance could repair it.

Table 3.6: Impact Levdb]

Assessment Once the threat, vulnerability and impact levels have bestarchined. A deci-
sion on the risk faced by an action can be taken. The Austréigpartment of Commerce’s
Information Security Risk Management [@jovides a good methodology, where the threat and
vulnerability level is used to determine the likelihoodgsable 3.76]) of the threats exploiting
the vulnerability. This is then used along with the impagtldo determine the level of risk (see
table 3.8[6]). Finally, this risk assessment does not stop here, butbeiltonstantly modified
and used in the next steps.

CHAPTER 3. POLICY SOLUTIONS 53

Qualitative Measure | Description

Nearly Certain The threat level and vulnerability level afre
both high making this almost certain to occur

Likely The threat and vulnerability level are
high, but it is not certain this will occur.
Moderate It is likely this event will occur,
but it probably won’t happen immediately.
Unlikely It is doubtful this event will occur
but there is still a possibility.
Rare The threat and vulnerability levels are so low

this would only occur in an exceptional circur
stance.

=}
]

Table 3.7: Likelihood6]

I mpact
Likelihood | Insignificant| Minor | Moderate| Major | Catastrophig
Nearly Certain H H E E E
Likely M H H E E
Moderate L M H E E
Unlikely L L M H E
Rare L L M H H
E = Extreme Risk
H = High Risk
M = Moderate Risk
L = Low Risk

Table 3.8: Risk Leve]6]

3.2.3.3 Scheduling and Patching Strategy

Too often in the past patching was done in an ad-hoc 'as theh@atived’ manner. Vendor
release policies have helped this somewhat (see sectipnld.8nsure that patching is done reg-
ularly in a controlled and predictable manner a patch sdeeshould be created. This schedule

CHAPTER 3. POLICY SOLUTIONS 54

will primarily be informed by the initial risk assessmentrformed in the previous step. Chan
[91] recommends the creation of two patch cycles.

e Regular, defined and predictable cycle for non-criticahdtad patches. Usually with
time-based triggers.

e Expedited, when necessary cycle for critical patches. ljswith event-based triggers.

The first is a regular cycle whao’s purpose is to ensure thaegtpn of normal non-critical, stan-
dard patches and updates, these are often non-securitjegpdadates for which an effective
workaround/mitigation exists or an update for a vulnergbthe organisations security infras-
tructure already mitigates. The cycle can be either timeventebased e.g. monthly or after
the release of several such patches. This can be split todosaparate longer cycle for large
cumulative updates such as service packs or operatingnsygigrades. Given the large num-
ber of changes such upgrades introduce, it is usually reguiore testing and integration, e.g.
training support staff, upgrading related applicationgggrating software. Thus, a longer more
carefully planned cycle can be split from the first. The selcoycle’s purpose is to ensure the
installation of critical security patches and updates droikl be completed whenever a critical
patch is announced.

An initial assessment of the patch is required to determih&hvof the two cycles a patch
should be placed in. In addition, within each of these cyalbgerarchy of patch priority should
be developed to determine what order patches and machieegosked on. These decisions
will primarily be informed by the risk level associated wilpatch and it’s related vulnerability.
When determining when to patch, there are two conflictingsress shown above, the first is the
risk of applying a patch and the second is the risk of compsenfor the risk of not applying
a patch). In their seminal work on the subject Beatti@l. [2] describe how the optimal time
to patch can be solved. Over time the risk from compromiskimétease, as exploit and attack
tools are published and improved, while becoming more widebw; and the risk from a patch
will decrease as bugs are reported and the vendor re-idseipatch or provides advice. Thus, a
hypothetical graph of the risks will look like figure 3.1 [2yhere the optimal time to patch is at
the intersection of the two risk curves. Beattal. provide research analysing a cross section of
patches and vulnerabilities and showed that the optimad torpatch was at eitheéen or thirty
days after the release of a patch. This was based on complaeimgmber of times patches were
re-released due to problems to the number of intrusionseand thirty days the risk drops

CHAPTER 3. POLICY SOLUTIONS 55

Threat of intrusion

\
v
Threat &
Level @Optimal time to patch
A
lj N

v

0,0
Time

Figure 3.1: Hypothetical graph of the risk of compromise patthing [2].

off. They also provided their methodology, encouragindher research on the optimal patch
application time of specific vendors. Ideally, solving th@imal time to patch for the specific
subset of software vendors used within each organisatiardyarovide an optimised estimate,
and could be shared with the wider community. It is importamtote, that if an organisation has
sufficient resources to thoroughly test a patch before gepdmt, then the risks a patch presents
to that organisation can be reduced at a sharper rate, and Bpred up patch deployment and
reduce the risks faced from a compromise. The ten and thayd&ployment suggestion is
primarily for smaller organisations with limited resouscéhat cannot afford to deploy a large
patch testing regime. The specific risks, and risk threshsthduld be worked out in the previous
risk assessmeistep.

Sun Microsystem’s documestolaris Patch Management: Recommended Strategye&m-
mends a strategy not mentioned in other documentationpfhatnimising change. The argu-
ment supplied for this supports the risk assessment coedwatiove and should be taken into
consideration when crafting a patch schedule. The argueiamhs that “overall downtime,
planned and unplanned combined, goes up with more frequgfication of patches[3] " In
figure 3.2[3] this theory is demonstrated. Up-time increases at a camnsti@over time which in
an ideal world with no downtime out look like a straight ligham the origin. However, if there
is an outage up-time stops increasing and a plateau is foriftegl current patching strategy of

CHAPTER 3. POLICY SOLUTIONS 56

— |deal Availability

—————— Reactive Patching

Patch Everything

.................... Strategic Patching

Availability

v

0,0
Time

Figure 3.2: Patch application and its impact on Availap{g]

apply every patch thus looks like a regular set of plateaatsrtsults in the lowest total up-time.
The other extreme is to only apply patches after a failurda stscan intrusion. A failure would
result in unplanned downtime which would be longer than péghdowntime, due to the extra
time required for problem diagnosis, to divert resourcekbdire to being less prepared. Once the
failure resulting in unplanned downtime is corrected, aditawhal planned downtime is neces-
sary to apply the fixes that could have prevented the intnuditis is represented by the reactive
line. It is interesting to note that it is possible for reaetpatching to result in less downtime
than applying every patch. This graph does not include diowentlue to faulty patches, which
would presumably reduce the up-time of the current straéegy more. However, the reactive
strategy isn’'t acceptable, and intrusion can have far megative results that just downtime.
Therefore, a strategic patching schedule should seek tmigptbetween these two extremes.
By only applying necessary patches, the planned downtiora fsatch installation, downtime
from patch failure and downtime from an intrusion can be mised. Given that downtime also
has a cost element, strategic patching can also help toegdacosts of patching.

Minimising change recognises that not every patch thatléased is applicable to an organisa-
tion. There are two primary considerations to minimise cfed8] .

1. Address only know issues for which no acceptable workadaxists.

CHAPTER 3. POLICY SOLUTIONS 57

The patch and vulnerability group should analyse the patchidentify whether the or-
ganisation suffers from the problem it purportedly fixes.itlfloes, then research into
alternative 'cheaper’ methods of remediating the probleoutd be conducted.

2. Keep current according to business needs.

The version of software used should be the lowest, still tagied, version appropriate to
the specifics of an organisation, unless new software iggbd@ployed. In addition, new
features should only be deployed if necessary to businesisne

For example if there is a vulnerability in a mail client thatiy affects people using the IMAP
mail protocol, then users of the software who do not use IM&RI(have it disabled) but rather
POP3 can ignore the patch. Alternatively, if an acceptaldekaround such as disabling a non-
critical service exists, it can be used instead of the pathls will ensure that the software is kept
as up to date as your organisation requires, instead of as dat¢ as the vendor has allowed.
An intelligent choice of which patches should be installad ceduce the number of patches in-
stalled. However, it is important to ensure patches areiliged to all vulnerable machines [46,
pg 2-11], minimising change by limiting distribution to higisk groups only is an ineffective
measure due to the nature of an intrusion, where often |laveality and low risk machines are
compromised first providing an attacker with internal asdeshe organisation [93] from which
further attacks attempting to achieve a higher level of camyse can be performed.

From this information a patch schedule should be created tfidggers and timing of this sched-
ule should be specific to the organisation. The optimal tongatch for the software used withing
the organisation should be determined and used to detetimniengths of or triggers for the
schedules. In addition a strategy for deciding into whichesiule a patch should be placed
should be determined. This will take as its primary inputrisk assessment from the previous
step. This should be used to first decide into which cycle ahpsiiould be placed, and second
to determine when a trigger has been reached.

3.2.3.4 Testing

Testing is a critical part of any patch management proce$e primary goal of testing is to
reduce the threat of faulty patches discussed inidlemanagemenrdection. Given the amount
of regression testing that can be required, this goal cahdprimary delay in patch deployment

CHAPTER 3. POLICY SOLUTIONS 58

and stands in competition with the need for rapid patch depémt in the face of a shrinking
exploit and patch window (discussed in section 2.3). Wotilethe hasty application of a faulty
patch can cause a wide range of damage, for example it caildpfremediate the vulnera-
bility, undo fixes from past patches, introduce new vulngiteds, impair the functioning of the
software being patched or impair the functioning of othdtvgare. This could be either mali-
cious or accidental. Testing is especially important if atoenated patch deployment solution
will be used. A common worry about automatic patching is thatty patches will be deployed
automatically [39]. This is usually due to inadequate pa&sgting, both from the vendor and
the organisation. The deployment of a patch to productioohim&s should not be considered
testing, whether manual or automatic. To minimise thedes rig patching it is critical that an
organisation thoroughly test a patch before it is deploylesting is primarily a technical step to
determine whether the patch and resulting updated softwidiractually correct the vulnerabil-
ity, and that the affected components continue to functmmectly. Particularly in the context
of your organisation’s specific configuration. However,iiddal information such as the likely
disruption to business during patch deployment and anygdsato business processes can be
observed and document.

The steps performed when testing should be determinednitikiorganisation and documented
for each relevant system and piece of software. These cloackgary from a simple check that
the patch installed and the system rebooted correctly, riassof automated scripts checking
the critical functionality of the officially supported sefare. Standardised configurations set to a
common base line should be created. This helps to reduceithber of different configurations
that need to be managed, as it does in the production enveonm document for each base-
line should be created with the expected behaviour of theesyslescribed and verifiable tests
provided to check this [101].

Ideally, the testing should be done in an environment that#x mirrors the production envi-
ronment, however this is very often not possible. At a mimmihe test environment should
represent all mission critical servers [91]. It is not alwgossible to re-create the exact pro-
duction environment, particularly in organisations withited budgets. Standardised base-lines
allow the configuration of machines to be more easily defimetira-created. With standardised
base-lines a testing environment would only need one exawipéach configuration. Virtual
machine technology can be used to reduce costs and re-pagéitilar environments. Several
virtual machines can be run on one actual machine, creatifapan-a-box’ which can dra-
matically reduce the hardware costs of setting up a testaath,improve ease of maintenance

CHAPTER 3. POLICY SOLUTIONS 59

[94]. The downside is that specific physical hardware irtgoas can be difficult to model with
a virtual machine, particularly for hardware-specific s@fte such as drivers. Three excellent
products which can be used are VMWare [102], Xen [103] andrddicft Virtual PC [104] and
Virtual Server [105]. After testing patches in the lab, tloay be deployed in a waterfall style
roll-out, where patches are deployed to the lowest criticadasily recoverable machines first,
then continue up the criticality hierarchy. This can helgliecover any bugs missed in the lab
while helping to minimise risk, but may still result in somewanted downtime and should not
be used as the primary testing method.

While the tests will mostly be organisation specific, sonststare common to all patches. Some
patches rely on other patches or supersede previous pakim&ge that all required patches and
their dependencies are tested and deployed in the coramt ¢ior example. OracleAD Merge
Patch[106] can merge several patches into one install path antiearto reduce the complexity
of installing multiple patches , Sun and other vendors acdata their patches into one package
before hand [3] while Debian [70] and Microsoft [107] builégendency checking into their
deploymenttools. In addition, vendors often release catiud or roll-up patches. Most vendors
provide a method for checking the authenticity of a patch.e Tost basic versions involve
checking a hashof the file with a fingerprint available at the vendors webshtore advanced
authentication mechanisms involve an automated checkrfaughoritative digital signature.
This authenticity should be re-checked as the patch is maxaehd the organisation, to prevent
tampering [91]. Some organisations may choose to put theirignature on the patch. After
verifying the authenticity, the patch should be scannedafor malware by an up-to-date anti-
virus software package. If possible, the patched softwarald also be scanned in case the patch
contained malware that only became obvious once deployedsiach example can be found in
Ken Thompson'Reflections on Trusting Tru$t08]. None of these methods are guaranteed
to protect against all malicious patches, for example ifdreator of the patch had an, as yet
unseen trojan, stowed away in their final patch release, itldvappear signed and most anti-
virus packages wouldn’t detect the trojan [46]. After degmhg the patch to the test environment,
ensure that the vulnerability has been correctly patchedlthat no new vulnerabilities have
been re-opened. This is mostly easily, but not completdigcked by a vulnerability scan.
Repeatable tests that can be used to ensure that a patchdmasdveectly installed should be
devised and documented. Most often the verification of aessgfal deployment is provided for
by automated patching software. However, the range of egpdins and functions which require

8Given the recent cryptanalysis attacks against MD5 and $Hxerifying with one of these hashes is not
sufficient. Other hashing algorithms such as SHA-256 shbeldmployed.

CHAPTER 3. POLICY SOLUTIONS 60

patches through their life-cycle will ensure this is not ajw straightforward. Some vendors
provide information on how to verify the patch was installedproviding repeatable checks

that can be performed. These checks can include; lookintpatdisions and hashes, checking
configuration settings, observing different behaviour ata will have to be determined for each
patch. Some patches also provide a method to undo the chanitpesevent a patch needs to be
rolled-back [46]. Debian, Red Hat, Solaris and Microsoftpabvide some patches which can
be easily removed, but not all patches have this functignalind without exact copies of the

previous files they often revert to a default state which isaiways desirable. These should be
tested and appropriate backups taken to restore the syktepaich needs to be removed and
the undo functionality does not work or is not present.

Given the need for an expedited testing process, severabaietan be employed. On a procedu-
ral level, noting the interactions already tested by thedeewan save time while subscribing to
the vendors patch notification service can provide earlynimgs and reduce redundant checks.
Community lists should also be monitored. For example thtehpmanagement mailing Ifst
often has discussions on faulty patches and their solutidnmossible, automated tests for the
core business process should be implemented, for exampiparong the accounting informa-
tion produced from the same input sent to two versions of tfievare, one patched the other
unpatched, can catch subtle data corruption bugs and caiviadyt implemented. Performing
as much of the testing overhead as possible before the acememt of a patch will help to
reduce the time taken when the patch is released. For exagnapieg a regular automated back-
up system in place can reduce the time required to make baglkefore a patch is deployed,
allowing removing the patch to be tested more rapidly. lyastiecking the dependencies of the
patched software can allow for certain tests to be pri@dtisver others. For example, if a patch
updates a dynamic library then all programs depending onlittrary should be tested. As a
further time saver scoping the testing to the changed fanstcan result in fewer tests without
significant danger. For example, if only one cryptographgoathm is patched in a dynamic
library, then testing all of the algorithms is somewhat kessful. These tests can also help in de-
termining what services should be checked for new or oldesalbilities that were inadvertently
created by the patch. However, scoping the tests too muctesait in an incomplete study and
missed bugs.

Due to the difficulty in working out program dependencies prelenting too narrow a scope.
Some tools have been developed in an attempt to partly ateditia. The assumption is that if

Sht t p: / / pat chmanagenent . or g/

CHAPTER 3. POLICY SOLUTIONS 61

the patch can be analysed for all possible dependenciasttibescope can be narrowed to only
testing dependent programs with no danger. In additiodtisfaan be better troubleshooted by
reverse walking the dependency tree. Two such tools attengu just this, Microsoft'sStrider
product [109] or Solarissowhat[110].

If there are several possible methods of remediating a valtrilgy, then the assessments must
be carried out on each one. The risk management step prdtielésols which can ease making
a decision between the competing threat from patches anddttackers. Thus, any additional
information as to the threats a patch pose to the organmatiest be used an an additional input
into the ongoing risk assessment. At this point an assedsaseio whether the risks are such
that the patch should or should not be deployed must be métiee tlecision is to not deploy
the patch then alternative layers of defence must be twedhisds discussed further in section
5.3.

3.2.3.5 Planning & Change Management

Much of the purpose of a patch management policy is to martageliange introduced by a
patch. As such integration with existing change managesteunttures are critical to its success
[91]. As with risk management, change management is a laeggethiat will not be discussed
in detail here. The primary goal of change management witblygrovide documented proce-
dures for various aspects of the patch application to keapgds consistent and avoid surprises.
Having a clear change management policy will help when tesimoting problems as specific
changes which caused the problem can be pinpointed, reélpgesonnel summoned and future
problems avoided. During this step a plan for how the patdhb&ideployed and the changes
logged will be developed. It should seek to minimise thegisk patching by fully utilising
the advanced warning afforded by knowing when a patch williégloyed. The benefit of ad-
vanced warning is that contingency and back-out plans catebeloped. The end result should
be a documented process specifying explicit steps whemijpigrior and applying change and
ensuring accountability for applying changes.

Such a policy requires four important functions [91]:

1. Proposed Change

2. Contingency and back-out plans

CHAPTER 3. POLICY SOLUTIONS 62

3. Risk mitigation

4. Patch monitoring and acceptance

The proposed changes, namely the patch or workaround tHdiemleployed, should be doc-
umented. The details of what change is introduced would baea discovered during testing.
These changes should then be approved and signed off bydb&epesponsible for the systems
which will be modified. This will help to provide a clear authieated audit trail of changes in-
troduced. To prevent inconsistent deployment, accessatsrshould be used to disallow users
or other programs from installing their own patches, uniess preferable to do so. To en-
force this consistency policy, guidelines as to what le¥elrdt from the baseline is acceptable,
and how users should behave and respond to patch deploywigidations should be drawn
up, coupled with regular checks to ensure the guidelinegffeetive. These changes must be
distributed to relevant stakeholders, this can be achigwddan organisational patch and re-
mediation database. The advantage of this is that it prevadeentral resource than can be
referenced in the future when information on the patchiracess is required at a later stage,
such as when creating new baselines or calculating me€itange management allows depen-
dencies to be created between groups and systems, allowimnge in one group to trigger an
alert to another group that might find the change relevants iBimportant when maintaining
operational baselines, as build images and documentatis be updated to include the de-
ployed patch. To quote Chan [91] “These modifications aretnaeslly and suitable handled
via an enterprise-wide change management system.”

Contingency and back-out plans should be prepared for at wase scenario. Documentation
describing what is being installed, its intended outcont lzow to remove it should be drawn
up. The procedures to restore system state from back-ugtedrduring the testing step should
be documented and made repeatable. Ideally these shoulorkedinto a regular schedule that
doesn’'t wait for a patch release, to save time during depéniThe inventory of system assets
drawn up in step one can be used to inform the direct end-asersotify or request help from
the people marked as responsible for the relevant asseatswilhallow personnel to be notified
and on standby in the event of a failure; with support stafffieal of the upgrade and briefed on
the relevant information with which to respond.

Risk mitigation requires performing the roll-out in a wathwill limit possible complications in
an attempt to reduce the likelihood of a threat being re@dli3e achieve this, both the technical

CHAPTER 3. POLICY SOLUTIONS 63

and procedural aspects of deploying the patch should bgsethfor possible failure. Any fail-
ure points should then either be removed, mitigated or mgech On a technical level this may
require that the infrastructure can handle the patch depdoy. For example, ensuring that the
file server distributing the patch has enough bandwidth jfamat, staggering the times at which
machines update or providing more bandwidth are possililgigns that should be implemented
before a deployment. At a procedural level this requiresieng that the necessary non-technical
components for both the changes and contingency plan aitatdea For example, ensuring rele-
vant personnel are available or staggering updates toetisatrpersonnel are not swamped with
troubleshooting. This is often a difficult task to performitais not always easy to see the pit-
falls. Previous experiences with faulty patch installatishould always be documented, and can
provide a useful source when looking for possible pointsadtife. A common components of
risk mitigation will include details of patching machinést the automated deployment methods
failed or are unable to patch, such as machines that wererpdwdf, mobile device that were
outside the organisation network and unsupported softaadehardware devices (e.g. router
firmware). These must be planned for. Common solutions declu

Using pull-based patching, where the device pulls its ownohgs as soon as it can

Quarantining unpatched devices in a limited access netawdrknet

Enlisting the help of users

Plain manual patching

A deployment schedule detailing which systems and groupystems will be patched and in
what order, taking into account the business needs andagsdaciated with each group should
be drawn up.

Plans relating to the monitoring and acceptance of patotted evhat criteria must be met for the
patch to be considered successful and how these critetib@vihonitored. This will provide a
specific and measurable milestone for the completion of plgeade [91]. It is naive to think that
all patches will install smoothly and working in emergencgda until all patches are installed
can be a waste of resources and divert attention from moreriaqt vulnerabilities and threats.
This should provide specific and measurable criteria baseti@level of risk the organisation
is facing and find acceptable. In addition, these points @aoded when developing patching
metrics discussed below.

CHAPTER 3. POLICY SOLUTIONS 64

3.2.3.6 Deployment, Installation and Remediation

Many system administrators have the most experience wghsthge of the process [91]. Often
when referring to patch management or patching, many atalfctreferring to the physical
act of installation or deployment of patches. Due to the $oon deployment this is one of the
better understood steps, and the area into which the moktivesrbeen performed, particularly
into automated patch deployment tools. It is important ewwihis step as part of a larger patch
management process, and is the snag many patch manageourdtpifail to realise.

This step is primarily concerned with creating a method feeatively deploying patches with
minimal manual intervention. Unattended automated depéyt is not always desirable how-
ever, and it may be more appropriate to patch mission crigigstems manually, during off-peak
hours [94]. Automated solutions do help aspects such agireglgosts of large-scale deploy-
ments and automating repetitive stages of the patch mareaggmocess providing both a benefit
to speed and reduced chance of human error [3]. More on dyatch management solutions
can be found in section 5.2 with further discussion of thémézal aspects of an automated so-
lutions discussed in section 5.2.1.6. However, not eveegef software and device will be
supported by the automatic deployment methods used. The gtafted in the previoushange
managemenstep (see section 3.2.3.5) should be followed and shouldlbamedictable prob-
lems. This control will help to prevent drift from the cornsiscy correct change management
procedures seek to create. The patches should be deplagyedirolled and predictable manner
that limits disruption to the business’ processes.

Several technologies can be used to improve the speed am@degof patch deployment. Com-

pression can help to speed the transfer of the patches tasardnachines. Distributing patches
as binary differentials can dramatically reduce patch Eizd]. Encryption can help to reduce

the chance of tampering and hide the often sensitive infaomasuch as details of operating

system, hardware, installed applications and patch lebeing sent between client and server
machines. Digital signatures, particularly if they haveeatly been implemented within an or-

ganisation wide public key infrastructure, are a mostly daaary method of preventing tamper-

ing with patches and ensuring only approved patches ar@ledt Unfortunately many of these

features need to be implemented by vendors and patch depidgrools, which are not always

developed in-house, these technical features are digttigsieer in section 5.2.1.6.

It is important to remember that patch deployment tools isurestall software at a higher priv-
ilege level to many machines in the organisation, the sgvefia compromise of the patch

CHAPTER 3. POLICY SOLUTIONS 65

deployment tool, allowing it to be used as a malware infectiector, would be high. Unfortu-
nately, this security implication of correcting securityliverabilities is sometimes ignored. For
example, when Microsoft released the MS05-038 patch [11] eorrupted digital signatures,
neither Microsoft nor end-users mentioned the possibiligt this was the same symptom a
compromised patch would demonstrate [113]. Thus, the ggafrthe patches and patch dis-
tribution mechanism should not just be a function of testing rather a constant pressure, with
every stage of the patch’s life-cycle, from first obtainibdrom the vendor right, through it's
deployment and finally its successful deployment must beaiged and authenticated [91].

In a larger organisation, multiple patch deployment meshody be used and determined by
relevant business units. In this case, it is appropriatéHerpatch and vulnerability group to
provide the relevant information to the various partiesc®again, the organisational patch and
remediation database mentioned earlier can provide thiés dan also be useful in allowing
end-users to apply their own patches for organisationstwgice the user more control over
their desktop machines, such as universities or other rgs@astitutions.

3.2.3.7 \Verification & Reporting

Not every patch deployment will be successful. Some mashiik be unavailable during the
roll-out while others will fail mysteriously. The goal of ihstep is to verify the successful
installation of the patch, and discover which patches diaite deploy to which machines and
why.

The deployment plans drawn up will have detailed which maehiand groups of machines the
patch should have been deployed to. In addition, duringniggsspecific repeatable tests which
can be used to verify the successful installation of thelpatould have been provided. The
documentation and resources provided by the asset andkiestary created during information
gathering, the patch verification steps drawn up in testimdjthe deployment plans created in
the change management step should provide an easier tg thetfthe machines and services
to which patches were deployed had the patches successfstifled. It is interesting to note
that Chan [91] argues that this step should contain the asshost management inventorying,
performed in this policy during information gathering. @ivthat system discovery is critical for
more security aspects it is believed to be more appropyigtated where it is currently.

Verification that the patch has been installed and that tteevability has, in fact, been reme-
diated needs to be conducted. It should have been ascerumiag testing whether the patch

CHAPTER 3. POLICY SOLUTIONS 66

does remediate the vulnerability, thus verifying this cannfinimised at this point. However,
if the vulnerability has been remediated then it can be assduimat the patch was successfully
installed (but not vice-versa), thus if the choice is betweerifying the patch install or veri-
fying that the vulnerability was remediated, the latteridddoe opted for. Verification can be
either direct or indirect. Direct methods would includei@es that require local machine ac-
cesd’, for example checking patch logs and file hashes or configuraiptions (e.g. registry
settings), indirect methods are performed remotely anddvoglude methods such as observ-
ing port connection strings or remote vulnerability scagniSome vulnerability testing should
occur by performing a vulnerability scan on a represergaample of patched machines. More
on vulnerability scanners can be found in section 5.2. Malbidity scans sometimes include
actual exploit techniques and may cause harm to the sydtenspecifics of the scan should be
noted to prevent a harmful scan [46, pg 2-14] from wreakirggkimd of damage the patch was
supposed to prevent. In the time since the initial creatiothe host inventory, new machines
may have become active on the network or mobile devices mayfedurned. It is important to
include them in the patch deployment. A good automated asgattory system should update
the inventory as the new machines become active, but this mioenecessarily mean they have
had the patches deployed.

At this point some problems due to a fault in the patch shoeltbine evident. These need to
be identified and remediated as soon as possible. The righatniin steps put together during
the change management process could help to minimise thectimpy ensuring that problems
are planned for and the relevant staff are ready to respotidtive contingency plans. Staff
should be aware that a change has been implemented andneautm be on the lookout for
subtle inconsistencies, such as minor miscalculations ssall fault in the patch that goes
unnoticed could potentially be very harmful. At this pointacision should be made as to
whether the changes should be rolled-back. This decisionldlibe made if the patch is causing
more problems than the related exploit, or if there is momncke of a bigger problem (higher
risk) manifesting itself than an intrusion presents. If grevious steps have been conducted
thoroughly, it is rare that this decision should be madet i,ias in chess, ensure that every
system which has the patch defence removed is covered byeainat defence.

This phase should also generate reports, record rele\atigtists and document any problems
that occurred to prevent repeat mistakes. These repontsdshe summarised and regularly for-

10 ocal access is not the same as physical access, but it h#arsiequirements, usually valid user credentials.
However, local methods can often be performed remotelysiehiyaccess can provide direct manipulation of the
machine allowing root or administrator access.

CHAPTER 3. POLICY SOLUTIONS 67

warded to upper-management to ensure they know the patchgearent process is functioning
correctly [94]. These reports can also be used to tweak stees, particularly the risk assess-
ment step for future patches. To properly report on how weliinplemented patch management

process is meeting its targets, the targets need to be defsmeg metrics. To quote MacLeod
[93]:

Without having available metrics to measure specific aspefctour patch man-
agement programme, it is difficult to establish or set appatg patching targets
and objectives. [Which] makes it impossible to measureatsmn from targets and
[define] acceptable tolerance limits. Metrics help to desti@te that your patch-
ing efforts are effective and offer the security managentesmn solid information
that allow them to communicate security posture to the ssirstakeholders in a
meaningful way.

The metrics measured here are not limited to the most rgceeployed patch, they should also
be used to provide a summary for relevant groupings of patahd machines. These grouping
can be time based or be made up of a relevant basket of pattims,example groupings are;

all patches across all machines, all critical patches greléo mission critical server, all patches
deployed in the last year to desktop machines, all critieétipes pending during the last three
successful intrusions. By measuring the relevant stesisiti is possible to generate new reports
rapidly. Very little extra work is necessary as the requirgdrmation is gathered in this and

other steps of the policy. Automated tools will help to gatinese data and easily scope them to
the group desired.

A particularly useful metric is that gfatch coveragewhich is the percentage of machines that
have a patch or group of patches installed. The data reqgiarets calculation are:

Nm - Number of machines in grouping

Np - Number of patches being analysed
e Np; - Number of the specified patches installed

e Np, - Number of the specified patches not installed (unpatchezhimes)

CHAPTER 3. POLICY SOLUTIONS 68

The equation then required to calculate patch coverage arganisation PC) is a simple
percentage [93] listed in equation 3.1:

PC = (Np; + (Nm x Np)) x 100 (3.1)

For accuracy purposes, the number of patches analysedhadtby the number of machines
in the grouping should be the same as the addition of the nuwfbpatched machines and
unpatched machines:

Np x Nm = Np; + Np,

This is important to ensure that the measured resvjlt; + Np,) result is consistent with the
predetermined resulf\p x Nm) and hence the patch coverage result is accurate for thpigigu
For example if the metric is calculating the patch coverdgaabile devices, and only half the
mobile devices are included, the metric cannot be said tocbaerate. This is less important
for groups of machines that are stable on the network. Thesimof patch coverage is the
organisation’s vulnerability coverag® (') which provides an indication of how vulnerable an
organisation is:

VC =100 - PC

For example, if the patch coverage for all critical patchesrassion critical servers were to be
calculated N would be the number of critical servers in the group (e.g.),L8® would be the
number of critical patches deployed so far (e.g 10); would be the number of machines found
to have the patch successfully installed during verificae.g. 800) andVp, would be the
number of unpatched machines discovered during verificdgay. 200). Therefore, the result
is:

= <(1o§q%00)) x 100

= (38) x 100

= 0.8 x 100

CHAPTER 3. POLICY SOLUTIONS 69

= 80% patch coverage

Scoping these metrics by time can also be useful. Providimgneon time intervals, such as
5 or 10 day intervals, will allow the patch coverage at the esamberval across patches to be
compared. Calculating patch coverage when events in theekalbility life-cycle occur can be
used as input to risk management decisions or to prove tbete#ness of the patch schedule,
e.g. when the first exploit was released the total patch egeswas at 75%.

1. Time at which exploit code was publicly available for thenerability
2. Time at which an automated attack was released (worm)

3. Set patch coverage targets at a fixed time interval afeerelease of the patch.

A picture of the patch coverage at each point can be meastadier it was shown that the
release of exploit code is the primary trigger for an inceesattacks so, knowing the patch
coverage at that point and when a rapidly spreading wormléased is a useful metric. The
time at which the vulnerability was announced and the patab released should be included
to provide a more accurate picture of the metric. For examplie patch is released after
the exploit, then a patch coverage of 0% is better explaisdzbang caused by a patch not being
available rather than ineffective patch deployment. Ideig the risk assessment in a summarised
form along with the metric will further help to explain thetpl coverage, as a coverage of 0%
without any additional defences or steps taken is verywdiffefrom a well defended vulnerability
with no patches deployed. A larger example demonstratimgthese metrics can be employed
during a patch deployment is provided in table 3.2.3.7.

In-depth Patch Coverage Example A more detailed example will demonstrate the various
metrics that can be determined with patch coverage.

¢ If we imagine an organisation where all known vulneral@ithave been patched then
the initial patch coverage will be 100%.

CHAPTER 3. POLICY SOLUTIONS

70

e Later, a vulnerability is publicly disclosed and a patchateased at the same time.

The patch coverage for that specific patch across the oagamswill start at 0%. The

vulnerability coverage is at 100%.

e A couple of days later an exploit for the vulnerability is fialy disclosed. At this
point a calculation of the patch coverage for each priontyug is made:

Nm would be the number of machines in each grodip,would be 1 as we are only
calculating for one patch and can be ignoragh; would be the number of machines

found to have the patch successfully installed during wation andNp, would be
the number of unpatched machines discovered during veiificaTherefore, using

the patch coverage equation 3.1:

Mission Critical Business Critical
Nm = 230 Nm = 0654
Np;, = 191 Np; = 196
PC = (Np;+ Np) x 100 PC = (Np;+ Np) x 100
191 196
= (ﬁ> x 100 = (@) x 100
= 0.83 x 100 = 0.29 x 100
= &3 = 29
Operation Critical Total
Nm = 5015 Nm = 230+ 654 + 5015 = 5899
Np;, = 492 Np; = 191+ 196 + 402 = 789
PC = (Np;+ Np) x 100 PC = (Np;+ Np) x 100
402 789
= (m) x 100 = (%) x 100
= 0.08 x 100 = (.13 x 100
= 8 = 13

This shows that while the patch coverage of the organis&ipaor at only 13%, the missior
critical systems are well patched. The nature of the vulmgtacould be that the busines
and operation critical priority groups are well protectethwvadequate edge defences a

14

L

UJ

CHAPTER 3. POLICY SOLUTIONS 71

less vulnerable than the mission critical services rasgllin the focus on mission critical
machines. Alternatively, if the vulnerability was moredii to affect user desktops these
metrics should set off warning bells.

e Ten days after the release of a patch the organisation hasededitarget patch covt
erage of 50%. The calculations above are re-calculated%smigsion critical, 82%
business critical, 50% operation critical resulting in @tof 56% organisational patch
coverage. If the low patch coverage in operational priarigchines is unusual, an in
vestigation could help identify problems such as a deploynfeult or many out of
range mobile devices.

e Several days later an automated worm is released expldahmgulnerability. The
metrics are again re-calculated after responding to angl@no, and it is found that
the total patch coverage is now at 98% putting the threat tfteeworm at a very low
level.

e Another target at thirty days states that patch coverageldio® 95% or higher.

As the metrics are calculated they can provide informatimgproving the current deploy+
ment or help identify deployment problems. In additionytiean serve as input to the ris
assessment. Maintaining a database of these metrics fopatahes will allow the patch
coverage at the fixed points (10 and 30 days) to be comparecéetpatch deployments.

=

3.2.3.8 Maintenance

The maintenance phase is initiated when patch deploymempletion, as defined in the change
management plan, is reached. This is a meta-policy steghioatd allow the lessons learned to
be converted into feedback with which the policy can be impd It is a reflective step allowing
aspects of the implemented policy which are not workingatifely to be modified.

Each step of the policy should be examined for errors or prablthat can be improved. Infor-
mation gathering may require better research methodaa@gid resources or its host discovery
methods may need to be improved. Risk assessment may réuginisk thresholds which deter-

CHAPTER 3. POLICY SOLUTIONS 72

mine action to be modified or the methods by which risk is messbahanged. Scheduling may
require a different schedule that better fits the orgamsatneeds, or a modification to the trig-
ger events to ensure a faster response to patch announseresting may be incomplete and
require additional documented testing procedures to becaddeployment may be consistently
missing several mobile devices and require improved meatfmdloing so. The verification step
provides redundancy for other steps, and may help turn umasistencies in the way certain
steps are implemented, the cause of these inconsistehaekide investigated and corrected.
For example during verification it may be discovered thathbst database does not identify
mobile devices correctly, or that patch testing did not tdgicertain potential errors or whether
the patch really did remediate the vulnerability correctly

During this step other activities of the organisation sddo¢ examined to see if appropriate
interactions between them and patching can be established.important activities that will
most certainly impact on patching are staff training andveafe acquisition. However, the
broad range of activities within an organisation may préeseunch wider opportunities for the
patch management policy to be matured.

Training Skill shortages within the skills required for patch mamagat should be identified
and training provided. Usually, much of the skills and exigerrequired to implement the organ-
isational patch policy will reside in the patch and vulnéligbgroups and any subgroups they
utilise. However, these skills are not always present onaaeptable level and some training
may be required. Additionally, some departments may recgoftware that isn’t officially sup-
ported by the organisation, or mobile end-users may be medj@d perform some of the steps
from the policy themselves (although this should be limitd@ meet these need, patch, remedi-
ation and vulnerability management training should begrated into the organisational training
regime where appropriate.

3.2.3.9 Summary

A summarised view of the policy is provided in table 3.2 anelfigure 3.3.

CHAPTER 3. POLICY SOLUTIONS 73

Information Gather@ Maintenance

Risk Assesment @ification & Reporting

Patch Management

Policy

Scheduling & Patching Strat@ @ch Deployment & Installation

Testing @nning & Change Management

Figure 3.3: Diagram of the proposed Patch Management policy

3.3 Conclusion

Effectively managing vulnerabilities requires more thanethod to Effectively deploy patches.
Many factors are relevant in making decisions about howtodghit the vulnerability of an or-
ganisation. The primary and final remediation of a vulnditgtidring with it its own problems.
Managing all of this crosses multiple disciplines incluglvulnerability, configuration, change
and risk management. This complexity can soon get out of laaadpatching can become a
chaotic affair performed in a panic and informed by incortgolnd inaccurate information, cho-
sen because it was the only information available. Impldmgra comprehensive patch man-
agement policy is vital for ensuring the ongoing securitpoforganisation. The steps described
in this chapter provide a description of how such a policy lsammplemented. Each step draws
from the work of several high quality sources and a thorougteustanding of the current patch
management field. Unfortunately, each organisation isugi@nd the steps outlined describe
how a process can be implemented, not what process shoutddiennented. A discussion on
how to asses risk, for example, cannot judge the acceptisklthresholds and levels appropriate
for individual organisation. Specifics should be tweaked angmented with internal policies,
practices and most importantly the experience of exist@ggnnel. The trends described in
section 2.3 appear to be getting worse, not better. Impléngea policy such as this takes time,
initially patch testing and risk assessment will be slowrasiganisation learns how best to per-
form those activities in their context. Malicious attacken the other hand have a head start and
appear to be learning and collaborating. This impetus makpkementing an effective patch
management policy critical.

CHAPTER 3. POLICY SOLUTIONS 74

This chapter has provided a discussion on what steps argeddar the effective management
of patches and vulnerabilities. It has focused on orgapisaias users of software. In the next
chapter the actions of vendors when they release patchesamdned, and guidance on how to
best implement a patch release program in light of the coxite of vulnerability disclosure
is discussed. This should complete the picture of how to g@rthe complete vulnerability
life-cycle.

Chapter 4

Vendor Patch Release Policy

4.1 Introduction

In the previous chapter a discussion as to how users of s@&teauld best implement a policy
for managing the patches released by creators of the seftwaesponse to discovered vulner-
abilities. In this chapter the roles are somewhat reveraned,a discussion as to how creators
of software can best implement a policy for releasing patdbeiscussed. For the purposes of
simplicity users of software will be called end-users arehtwrs or maintainers of software will
be called vendors.

Effective policies are not only the responsibility of theetsof software (end-users), software
vendors must have a clear understanding of how they manageatiches they release and the
best way to release them. Historically vulnerability distlre and responding to vulnerabili-
ties has proved difficult to standardise, with a high levetofifusion and antagonism between
security researchers and vendors. To combat this and ems&aeingful and useful interaction
between researchers and vendors several disclosuregsoliave been suggested; a resource
dedicated to collecting publications related to discledists a total of twenty two different dis-
closure policies published between 1999 and 2004 [114] Iglees, security researchers and
third parties. This confusion makes it difficult for vendtosstandardise on a release policy, and
instead the responsibility for formulating an effectiveaghbamanagement policy is passed onto
the end-user. As will be demonstrated in this chapter, thizecause the type of disclosure has
an impact on the effectiveness of a vendor’s patch reledsgy/po

75

CHAPTER 4. VENDOR PATCH RELEASE POLICY 76

In an effort to ease the administrative burden of patchingrarusers some vendors have decided
to move to a predictable patch release schedule. The firgiovea announce such a move was
Microsoft. Soon afterwards Oracle and Adobe announcedwloeyd also move to a predictable
cycle. John Pescatore of Gartner believes predictabld patease schedules are on their way
to becoming an industry standard [115]. However, simplidya patch release cycle ignores
the complexities that the full disclosure debate has intced and risks oversimplifying the
matter, as will be demonstrated below. In both Microsoft @mecle’s case, the reactions to the
announcements were varied. Some security experts weredonove [116, 117], others against
[118] and the majority were silent, the lack of consensuscetéd a shortage of research and
understanding as to the possible effects. Since then batlostift and Oracle have both come
under heavy criticism, and received praise for their patttedule implementations by security
professionals commenting on the same events. Propaghtspdlicy to other vendors without
a thorough analysis and with little understanding of thea would not be desirable.

Surface observations of the implemented schedule havelesl/&oth successes and failures.
This chapter provides a detailed argumentative analysigatifh release schedules, and their
effectiveness. By examining examples of how various tygelstclosure affects the risks faced
by end-users, recommendations on how patch schedulesddb®uhplemented and when they
are effective, or not, are formulated. In addition, lessl@asned from recent public security
incidents are used to suggest additional improvementstpribcess. The resulting observations
are used to describe a method for other vendors to impleraehtsscycle that will both minimise
risk and help ease the burden of patching on administrators.

4.2 State of the Art

In the past vendors operated without an obvious patch relselsedule. When a vendor was
notified of a vulnerability either through delayed disclasor otherwise, the general approach
was to create a patch and distributed it as soon as possilile problem with the "release when
ready” approach is that it requires end-users to contigumdnitor patch and vulnerability an-
nouncements. The average systems administrator has th fdrewew security patches, usually
daily or weekly depending on the available resources. Tit@iates a situation where, combined
with worsening number of vulnerabilities described in s@c2.3 and additional problems cre-
ated by patches described in section 2.4, many administragither due to a lack of resources

1Some vendors had a more nuanced approach, however, thisagmently relevant and is discussed later

CHAPTER 4. VENDOR PATCH RELEASE POLICY 77

or will, just weren't installing patches effectively. Estheck [7, 8, 9] is the only researcher at
the time of writing to have provided empirical data demaatstig the impact of patch release
schedules. In 2004 Eschelbeck’s data [9] shows that it tdo#ta®¥'s to patch half the vulnerable
machines on the internet after a patch was release (i.e.d&y&150% of vulnerable machines are
patched), and 62 days for internal systems. Internal syséeenincreasingly vulnerable as shown
in section 2.3.2, due to the increased multiplexing of prot® over fewer ports, and content con-
trol decisions moving from the organisational network baany to the end-user. Thus, internal
systems have become necessary to protect as you wouldadgstems, and this window from
patch release to patch deployment (62 days) allows ampke foemintrusions. Several notable
examples of this have been large scale worm attacks sucled3aitle Red, Nimda, Sadmind,
SQL Slammer, Blaster, Sasser, Witty and Zotob worms, whidhawed significant numbers of
internal 'desktop’ machines infections. To combat this tvigh profile vendors, first Microsoft
[119] and then Oracle [120] and more recently Adobe [115]sehim move to a monthly patch
release schedule. The caveat was that critical patched beukeleased out of schedule, similar
to the internal policy of some organisations where critatiches are given an expedited install
plan (see section 3.2.3.3). Microsoft chose to releasenpaton the second Tuesday of each
month (a monthly release), while initially Oracle chosedddw suit, then changed to a quar-
terly release cycle [121]. However, Oracle have come undavcriticism with some patches
being released containing flaws up to three years after threekability was announced [122].
Adobe, while planning to implement a monthly schedule, haddone so at the time of writ-
ing. Oracle’s response to published vulnerabilities araliguof released patches has been poor.
Most recently, Gartner came out severely criticising Qgagbatch practices [123]. Thus, given
the lack of alternatives Microsoft provides the best immatation of a patch release schedule
and will be the focus of the examples used, however this d&ou is intended to be relevant to
any vendor implementing a patch release schedule. In pkatj¢his discussion applies to both
open source and proprietary vendors.

The next iteration of Eschelbeck’s research [8] showedtti@ascheduling appears to have im-
proved things somewhat. In 2005 it took 19 days (down fromt@atch half of the vulnerable
machines on the internet, and 48 days (down from 62) to doaimedor internal machines. The
improvement in patching speed is provided in table 4.1. H@wnehe improvement in patching
is likely due to many other factors such as the renewed hypendrpatching, better patch and
vulnerability notification and better automated patchimgjs, and cannot all be credited to patch
schedules, especially since many vendors do not implencletsles as yet. The specific im-
pact of scheduled patches was measured by Eschelbeck gsristalled 18% faster. Additional

CHAPTER 4. VENDOR PATCH RELEASE POLICY 78

statistics from Microsoft [124] indicate that the numberpafople applying Microsoft patches

has improved dramatically (sometimes as high as 400%) shmeehange to a regular patch

schedule. At first glance, the release schedule appearsvindieated and proved as successful,
however this research hypothesises that there are othiesintflaws in a patch release cycle that
cannot be discounted.

2003 2004 | 2005
External System’s Half-Life 30 days| 21 days| 19 days
Internal System’s Half-Life] N/A | 62 days| 48 days

Table 4.1: Half-Life of Vulnerabilities [7, 8, 9]

4.3 An analysis of patch schedules

This section provides an argumentative analysis of patbhdides. An analysis of the specific
effects schedules have when vulnerabilities are disclogéetently is provided. Some back-
ground is necessary for the discussion, namely what argisitteminstigators of patch schedules
provide and some background on the types of disclosure.

Specifically a patch schedule provides a predictable reuti@scribing how often and when
patches are to be released, with a constant time betweeh méases. This is supposed to
provide two primary benefits:

e Higher Quality Patches

e Better Patch Deployment Planning by End-Users

These improvements are advanced by vendors in the vari@ss peleases and discussion on
implementing schedules [115, 119, 120]. There are othardotbenefits sometimes cited, such
as faster deployment and greater patch deployment. Howtéese are knock-on effects of the
improvement in quality and planning listed above and aresotgly influenced by quality and
end-user planning alone. For example, more detailed adess@dvertised to a wider audience
could also result in faster deployment due to more readibjilalle information for decision
making, and greater deployment due to a wider demograpimg lagvare of the patches. Thus,

CHAPTER 4. VENDOR PATCH RELEASE POLICY 79

the focus will only be on the direct benefits claimed by vesddrhe analysis below discusses
what trade-offs occur in gaining these benefits, and if stexthetoffs are acceptable. Most im-
portantly, these benefits will provide ample justification & patch release schedule if and only
if they;

1. Are actually achieved
2. They are not achieved at the cost of a large increase in risk

3. They cannot be achieved through better means.

4.3.1 The Disclosure Debate

Before a discussion can be had arguing for the differenesged in a schedule by different types
of disclosure can be had, some background on the types dbslise and the disclosure debate
IS necessary.

There are two primary types of disclosure, delayed disctand instantaneous disclosure. De-
layed disclosure is often referred to as 'responsible dgale’. Unfortunately, this is an emo-
tionally laden term which is not always accurate and will Beided in this discussion. There
has been much debate in the internet community about thallgomptimal method of disclosure.
The full disclosure movement of the late 90’s argued thatroyiding as much detail about a se-
curity vulnerability, the information was brought into thpen and provided administrators with
information with which to make their own security decisiofi$ie introduction of the BugTr&q
and Full Disclosurémailing lists were an important part of this, where previguailnerabil-
ities were discussed in private between security professso now the information was freely
available [125]. Aroraet al. [126] state that proponents of full disclosure argue thahdreases
public awareness, makes as much information public as dded@sers to protect themselves
against attacks, puts pressure on the vendors to issue bigdjitygpatches quickly, and improves
the quality of software over time.” The problem with full dissure is that without an effective
defence for the vulnerability, usually in the form of a pattie information is of more use to
malicious entities than to users [127]. Thus the conceptetdyeed or responsible disclosure
was introduced, where the information is first releasedapely to a vendor and then disclosed

’htt p: // ww. securityfocus. contf archive/ 1
Shttp://1ists.grok.org.uk/mailman/listinfo/full-disclosure

CHAPTER 4. VENDOR PATCH RELEASE POLICY 80

publicly when the vendor releases a patch [125]. Howevenynwandors adopted an attitude
of 'shooting the messenger’, where researchers who dedltse vulnerability were publicly
slammed [128] for reporting on vulnerabilities that exisia the product whether they were
reported or not. Most recently, Michael Lynn had his preseomn at the Black Hat 2005 confer-
ence literally torn from conference proceedings and tkreategal action from Cisco systems
for elaborating on a previously disclosed memory corruptiolnerabilities [129]. At the same
time, vendors would sometimes excessively delay the releba patch [126]. This led to much
antagonism between vendors and security researchers. essila third party trusted disclosure
intermediaries such as CERT/CC were used to intervene mevaibility disclosures, providing
reasonable deadlines for vendors and ensuring securdgnasers disclosed responsibly’ [127].
This also resulted in several recommended disclosureips]iwith the more noteworthy being
Rain Forest Puppy’RFPolicy 2[130], the Organisation for Internet Safety’s policy [13RuSS
Cooper’'s NTBugTraqg policy [132] and CERT/CC'’s policy [13%everal papers have been writ-
ten discussing the pros and cons of non-disclosure, fudlaisire, partial disclosure and 'socially
planned’ disclosur§68, 4, 134, 126, 127, 125, 135 discussion on the various types of dis-
closure is beyond the scope of this section; a simple sumisdnat the debate has fallen on the
side of delayed disclosure. It is sufficient to understamad there are two types of vulnerability
disclosure, one in which the public becomes aware of theeralnility when a patch is released
and the other where the public and the vendor become awane thvbe/ulnerability is released.

4.3.1.1 Delayed Disclosure

Figure 4.1 provides a visual depiction of a simplified vuéislity life-cycle based on the model
presented in section 2.2, in which the disclosure is deldydthe vulnerability is created when
the software is first developed. At some point the vulneitgtig discovered, this can happen
multiple times and by different parties. The vulnerabilgyhen privately reported to the relevant
vendor and a patch is developed. At this time the only exglioit of the vulnerability occurs
by the original discoverer and is of a limited scope. Whenghteh is ready, the vulnerability
is publicly disclosed and corrected at the same time. At poisit the number of vulnerable
machines starts to decrease as patches are installed. Aaithe time the disclosure of the
vulnerability details and the ease in which patches can berse engineered results in a rise
in public exploitation of vulnerable machines. As the vuaislity and patch are publicised the

4The vulnerability life-cycle used here is simplified to hiight the differences between the types of disclosure,
without muddying the waters with additional details.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 81

N
S~_ \Vulnerable
~ _Machines
~

Machines | o+ - . "T=a_

&

Exploitation

Public
Exploitation

i
|
|
|
i
|
|
|
i
|
I
} .
Vulnerable | j ~<
| .
I
i
I
i
|
|
|
|
|
|
|
|
|
|
|
i
I

v

0,0 ' . Time
Creation Disclosure/

: Patch
Discovery

Figure 4.1: Delayed Disclosure and its effects on vulnerafhchines and exploitation
Source: Modified from Rescorla [4]

number of vulnerable machines continues to decrease wiglentmber of intrusions of still
vulnerable machines continues to increase. A scriptecbéquuld be released soon after the
release of the patch or longer. This will result cause a ndbe rate of exploitation, but is not
relevant for the purposes of discussing the type of disctodtiis sufficient to know that active
exploitation is occurring, and is not included in the figure.

4.3.1.2 Instantaneous Disclosure

The process of instantaneous disclosure is similar to ddldisclosure, but with some pertinent
differences. Figure 4.2 details the relevant events. Ogaaahe vulnerability is created and at
some point discovered. However, instead of reporting theearability to the vendor the exploit

is circulated within a community of black hats and privatplekation occurs. Sometime after
this, the private exploitation is discovered 'in the wild/ B member of the public community
and is reported to the vendor. At this point the process de=tin delayed disclosure occurs
but with the difference that public and private exploitataccurs until a fix is released. The rate
of exploitation will increase as the vulnerability is pudiied and the exploit is possibly scripted,

CHAPTER 4. VENDOR PATCH RELEASE POLICY 82

~. Vulnerable
. Machines

Vulnerable
Machines

&

Exploitation

Public
Exploitation

. Private
: ; Exploitation

v

0,0 . .
Creation : Disclosure -
Discovery Patch

Time

Figure 4.2: Instantaneous Disclosure and its effects omerable machines and exploitatign
Source: Modified from Rescorla [4]

once again the increase in exploitation caused by the sagipf the exploit is not displayed.
The number of vulnerable machines will only start to deceatce a patch has been released.

4.3.2 Patch Schedules and Delayed Disclosure

When the vendor has a choice as to when a vulnerability isiglyldisclosed, the benefits of
withholding the information until a patch is released areshabvious: The problem is acknowl-
edged but a fix is available. It is important to remind the egatiat open source projects also
withhold vulnerability information from the general publintil a patch can be developed. For
example the Mozilla foundation frequently fixes 'Secur@gnsitive’ bugs which had not pre-
viously been disclosed [136]. A slight modification to ersstinat these patches are released
per a defined schedule brings more benefits. Administratoragoid surprises and make plans
ahead of time. Resources can be allocated, time scheduledeghoyment planned. In addition
the vendor can thoroughly test a patch to reduce the liketiraf a faulty patch being released
without the pressures of attacks in the wild that need to liggated. With both the details of a
vulnerability available and a patch which can be reversénereged, a scripted exploited, whether

CHAPTER 4. VENDOR PATCH RELEASE POLICY 83

released publicly or not, can be rapidly created [67]. Tbisés the vulnerability life-cycle to be
synchronised with the patch release schedule. The onlyhpat@roblem is that knowledge of
the vulnerability may already exist within private and riis groups or people This brings
us to the original justification of full disclosure; by putdlf announcing a vulnerability and en-
couraging people to patch, the number of attack vectorsadolaito such groups are reduced. If
there was no existing threat the vendor could silently fixubkmerability in the next upgrade.
The only defence from attacks against unknown vulneradsliis a comprehensive defence in
depth strategy which will hopefully mitigate or at leastal#tsuch an attack. Organisations cur-
rently face these threats, and releasing the patch per ddeh&hich results in the patch being
delayed longer than if the vendor released it when readi/nailsignificantly increase the threat
to an organisation from malicious attackers. This assuima®tis limited exploit distribution
within these 'underground’ groups, a safe assumption ;i¢ase. Thus, the reduced threat from
faulty patches and the increased efficiency of an organisatpatch management policy appear
to more than justify this marginal increase in risk.

An important assumption is that the vendor develops thehpaithin a reasonable time frame.
While the threats from an undisclosed vulnerability ardtia, they are usually not zero. There
is a potential for a separate discovery of the same vulndsatai occur by a malicious agent, or
for the vulnerability to be 'leaked’ by either the originasearcher or agents within the vendor.
The possibility of these events occurring increases owres &ind provides an incentive for a patch
to be developed quickly. Thus, patch schedules with too éongit between releases are likely to
provide more than a marginal increase in risk and should beled. This is partly why Oracle
is invalidated as providing a good implementation of a patdbase cycle, as their quarterly
release is too long. Unfortunately, there is little reskanto the probability of a leak occurring
or a black hat discovering the same vulnerability, and tlastis based on an informed guess.

4.3.3 Patch Schedules and Instantaneous Disclosure

When vulnerabilities are disclosed irresponsibly the wentb longer has control over when
details of the vulnerability and a related exploit are reézhto the public. In the case of zero-
day exploits, a working exploit is made publicly availabléheut providing the vendor with

advanced warning. Similarly, if no proof of concept expleds released with the vulnerability,

St is possible that the number of publicly disclosed vultdities and the poor patching record of many organ-
isations provides malicious groups with enough attackarsatithout needing to research their own.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 84

the existence of a vulnerability for which there is no patcbvides an attractive target and it
can be assumed an exploit is not far off. Current researdbates that the release of a scripted
exploit triggers the largest increase in attack activity][4Given the large increase in the threat
level, minimising vulnerable organisations exposure isiarjy for minimising risk. Thus, the
critical factor becomes how soon the vulnerability can Heatively remediated. If a patch
schedule will allow the patch to be released as soon as pes$isén it is vindicated. If however,
the patch is delayed until the next release date insteadud lbeleased as soon as possible, this
action is only justified if significant other benefits occuattftannot be achieved by any other
means. The two benefits most commonly cited, as mentiondeiprevious section, are that the
delay due to the patch schedule allows more testing and silbalministrators to plan for patch
deployment. Both of these will be examined.

4.3.3.1 Quality

The argument for improved patch quality through more pagstirig can be a persuasive one. The
effort required by an organisation to minimise the risk ob#ch causing problems are substantial
and, as shown in section 3.2.3.4, the single largest bettleaf patch deployment. Improving the
guality of patches to a point where they could be deployed litite testing would substantially
speed up patching and reduce risk. The argument is that hyidglthe release of a patch, the
vendor can engage in a thorough testing process. For exavhplea vulnerability in WMF files
was discovered in the wild (a type of instantaneous discéosxploit) [71], Microsoft's Security
Response Centre had this to say about the patch [137]:

We have finished development of a security update to fix theerability and
are testing it to ensure quality and application compatybiOur goal is to release
the update [...] as part of the regular, monthly securityatpdelease cycle, although
quality is the gating factor.

However, the question must be asked: why must this testir@pbducted in isolation? Surely
collaboration with the wider community of end-users uitiigsthe vendor’s products would re-
sult in an increase in testing and wider test bed. If the neadebear with us, the benefits of
community collaboration are well demonstrated by the #@® of Lawrence Lessig, a Stan-
ford professor of Law, who has been pioneering a movemenedaimeCreative Commonis

Shtt p://creativeconmons. or g/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 85

This movement seeks to encourage collaboration and renhevsyistems of control that seek
to monopolise creativity. Lessig and his followers adveaatemix culturewhere the works of
others can be freely used and built upon. One example of thefite of such a culture were
demonstrated when Lessig released his biérgle Culturefor free over the internet, something
that until now would have been ludicrous to suggest to a pbhbh

Last year Penguin Press made an unprecedented move terebsssg’s 'Free
Culture’ under a [...] license that enabled people to frelywnload the book from
the internet, and make derivatives for non-commercial pseg. After 24 hours, the
book had been made available under 9 separate formatsdbdtq), after 36 hours,
an audio version of the book had been announced, after 48 hawviki had been
launched [...] for others to build on and add to, and afterwaek, 200 000 copies
of the book had been downloaded. Today, nhon-commerciadlaaon projects have
started in Chinese, Catalan, Danish, French, Germararitafolish, Portuguese (2)
and Spanish (2). There are 3 audio versions of the book asawetersions for the
Palm, MobiPocket and Newton. [138]

Since then several other derivatives have been creatddding more ebook versions and sev-
eral easy to use hyperlinked versions. However, such grgedind collaboration is not unique to
publishing and and provides a highly appropriate analogyrerent event in the world of patch-
ing. When the WMF vulnerability for which no patch was avalawas discovered on the B
of December 2005 [139, 140]; one day later initial anti-gifi41] and snort intrusion detection
signatures [142] were available for the first variant; twggkater a partial workaround for the
vulnerability was posted [143], a movie of an exploit ocaugiwas provided [143] and malicious
sites exploiting the vulnerability were being shut down41445]. Five days later a third-party
patch was provided by lifak Guilfanov [146], later that dée tpatch had been disassembled
and verified by the Internet Storm Centre (ISC) which offesedigitally signed version [147];
a block-list of malicious sites and net-blocks utilising texploit was created [148] and CERT
provided a detailed vulnerability note on the issue [13®}.days later a version of the unofficial
patch was made available that allowed for an unattendedlif$49], it was distributed along
with scripts for deploying the patch enterprise wide [150h the same day 'safe’ versions of
the exploit were provided for vulnerability testing [151pag with an executable vulnerability
checker for vulnerability testing and patch verificatio®2]. The next day a comprehensive
FAQ on the vulnerability was made available by the ISC [188i{hin a few hours this had been

CHAPTER 4. VENDOR PATCH RELEASE POLICY 86

translated into 12 different languages, which had increédsel7 by the next day [154] along
with presentations available in several different fornfats3]. Eight days later the unofficial
patch was made available as a Microsoft Installer Packadgdl)(by Evan Anderson [155], for
easier deployment, and this too was verified and signed bsthel ater that day the site hosting
Guilfanov’s patch experienced difficulty due to high loadea hours later it had returned with 9
additional mirrors serving the files [156]. During this tinhMicrosoft maintained that an official
patch would only be released on thetN of January 2006 during the normal patch scheduled
release [157]. After massive consumer pressure Microseftteally capitulated and released
the patch on the'8 [158].

Why then did Microsoft not cooperate with this community gvdloping a patch? If knowledge
of the vulnerability already existed then the benefits ofpkeg the patch confidential are lost,
particularly when beta patches could be improved on andddst such a wide and active com-
munity. Ironically, Microsoft possibly acknowledges tlsyument with their Security Update
Validation Program (SUVP), which allows for patches to b&alested within a chosen group
of organisations, such as the US Air Force [159]. Microsefdfits by the additional testing
provided by an organisation with enough resources and anesttto thoroughly test patches,
and in return the Air Force benefits from the early protecéifiarded by getting a jump start on
their patch deployment procéssAlthough members of the SUVP are not allowed to use these
beta patches in a production environment, they can benefit &arly testing and ensuring their
configuration is supported. There is no reason to assume begefits would not scale if such
a beta program was extended to include the public. A posstlater-argument to this is that a
vendor can implement a better planned testing processgateesting within a community will
involve a lot of redundancy and cannot be guaranteed to erédl necessary tests. However,
this is simply a false dichotomy; all the benefits of a wellnplad vendor test schedule can be
accrued in addition with testing input from a community. IEoand mechanisms allowing mem-
bers of the community to interact and share their testinge&pces already exists in the form of
public mailing lists such as BugTraq and PatchManage®n@&iie only modification required to
take advantage of this testing community is to release ttetpa early and clearly mark them as
unsupported beta’s. By providing obvious warnings of thegdss inherent to deploying a beta
patch, for example on the patch download site and in the foatieh’s installer, or taking further
steps such as providing a registration system, users whotdknow better can be prevented

"Given the ease with which exploits can be reverse engindesadpatches, it is worrying to contemplate the
American military being given such offensive capabilitifore the rest of the world.
8ht t p: / / pat chmanagenent . or g/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 87

from installing these beta patches.

The level of community involvement in response to the WMFeuability, particularly related
to the unofficial patch, is unusual. While IDS and AV signatuand cooperation to shut down
malicious sites are thankfully fairly standard, the comithyudoes not always get as involved as
it did for the WMF vulnerability. The increased threat lee¢kthis vulnerability combined with
confirmed inaction from Microsoft may have lead to the sitwrat However, while arguments
claiming that one cannot always expect this level of comityuinvolvement are correct, this
does not invalidate the point. If the community were to pgevno additional help or guidance,
an unlikely case, the vendor would still not lose anythingreleasing beta patches and the
community would at worse not benefit from the early releasénbt lose anything either. If the
vendor were to release details of which configurations thehgaad been successfully tested on,
the few who fulfilled those criteria could benefit from earbtghing without having to wait for
all testing to be completed, ensuring that even if the comiywere of no help with testing, the
exposure of some organisations could be minimised sooner.

4.3.3.2 Planned Deployment

“Having a predictable schedule makes it easier for custsrteplan and when
you can plan, it puts less stress on the customers’ infretsirel and their people and
the results are better.”

— Mike Nash, Corporate Vice President responsible for Sggciticrosoft [160]

Providing a predictable patch release schedule can enddausers to their vendor. The capa-
bility to plan and allocate resources ahead of time resnltsmuch smoother deployment with
less chance of errors. It moves patching from an emergermerprocedure to an understood
business process. Unfortunately, these benefits are oage @gly available if the vulnerability
disclosure was delayed. Threat and vulnerability momtpare a separate process from patch
deployment. A patch schedule helps to synchronise theselefthe patch, vulnerability and
exploits so that threat, vulnerability and patch monitgroan likewise be synchronised. How-
ever, if the vulnerability was instantaneously disclodeel ¥endor is not able to maintain this
synchronisation. Thus, an end-user needs to be constaatiitaning their network for attacks
and understand and respond to potential threats. If a signifthreat and vulnerability are dis-
covered a risk assessment must be conducted and stepsdakéigate the risk. This must be

CHAPTER 4. VENDOR PATCH RELEASE POLICY 88

conducted whether the patch exists or not. Thus, the exaatgamcy mode scheduling patching
seeks to avoid persists. The best way to “put less stressearutomers’ infrastructure and peo-
ple” is to provide an effective remediation as soon as ptssPlacating end-users and playing
down the threat to maintain the patch schedule instead edselg a beta patch and encourag-
ing community support to develop quality remedies is couimtieitive. Even if the benefits of
planning did apply in this situation, the corresponding@ase in exposure is an unacceptable
trade-off. This increase in exposure makes it more likelt #n intrusion may occur. Intrusions
are usually unscheduled and costly to recover from whichdvrovide a greater inconvenience
than deploying an unscheduled patch. The emphasis witkipatch management community
and this document is for an organisation to perform their oisk assessment and choose a
course of action relevant to their needs. However, withie@tption of an effective remediation,
a vendor would be severely limiting the organisations opifor dealing with this risk.

4.3.3.3 Examples

The critical flaw in a patch release schedule is that it assualigpatches are responsibly dis-
closed. While the WMF vulnerability has provided the prisnakample used in the discussion
above, there are other examples of instantaneously destlpatches that have remained un-
patched for a significant amount of time and resulted in alessdncrease in an organisation’s
exposure to threats. Once again, the focus on Microsoft avaidable given the lack of any
other vendor having effectively implemented a patch reeasle. The WMF vulnerability is
unique in its level of community support and discussiontipakarly from Microsoft who have
been reluctant to discuss their motives in the past. Thesetamples below are of vulnerabil-
ities which could have been patched sooner, and were nohéosdke of the patch schedule.
However, they do not demonstrate the same level of commumibjvement as the WMF exam-
ple above and contained no serious flaws, indicating thaestang within Microsoft is effective.
Unfortunately, they do illustrate both the unacceptabteaase in exposure and an inordinately
large amount of time from vulnerability disclosure to patetease. It should be noted that these
examples are illustrative of the failings of a patch schedal instantaneously disclosed vul-
nerabilities only; Microsoft’s patch schedule has provedayeffective for delayed disclosure
vulnerabilities.

Krebs [161] researched the time it took Microsoft to releagatch from either the time of dis-
closure or the time it was reported to the vendor for 2003428 2005. The dates and times

CHAPTER 4. VENDOR PATCH RELEASE POLICY 89

were gathered by contacting the original researcher whoodesed the vulnerability and Mi-
crosoft. Unfortunately, according to our investigatiodsgbs’ calculations appear to be wrong
[162] with inconsistent errors in the number of days fromt fitisclosure until patch release and
the number of patches counted. However, the dates he gdtiygpear correct, and once the cal-
culations were fixed, because some days were too high ansddiwe his conclusions based on
the averages remain true. The results appear in table 412hanv that when Microsoft moved to
a scheduled deployment in 2004, the average time it took jateh to be released for all vulner-
abilities increased. They also show that for instantangalisclosed vulnerabilities Microsoft
has been getting faster at patching. Both these results ssaige. The average time to produce
a patch has increased due to the additional testing andyjaaurance that occurs, and the av-
erage time to produce a patch for instantaneously disclaseeérabilities has decreased due to
an increased security effort and an increase in threats eMenveven at the lowest average of 46
days, this is far too long. This provides plenty of time forigted exploits to be circulated and
used by anyone including unskilled attackers. To reiteeaten if the patch quality is increased,
the high exposure time brings this quality at too high a cBgtinvolving the community in the
testing effort high quality patches can be produced soam#is situation.

2003 | 2004 | 2005

Number of Critical Patches 34 28 37
Average Days from Report to Patch | 90.7 | 136 | 134
Average Days from Full Disclosure to Patch73.6 | 55 46

Table 4.2: (Corrected) Microsoft Time to Patch Summary

To back-up the claim that 46 days is too long for users to hawesit for a patch, two examples
of the type of damage that can occur during these long expaisnes can be found in MS04-040
and MS05-054.

MS04-040 This Internet Explorer patch took 38 days to produce fromdée of public dis-
closure. This vulnerability was not disclosed to the verimkfore hand. The average time taken
to release such a patch in 2004 was 55 days, thus, 38 dayslisel@V the average. However
during this time a variant of the MyDoom virus used the expéa a propagation mechanism
resulting in mass compromises. In addition, a banner-adcgewas compromised and the ex-
ploit placed into the advertisements. These were thenldiséd across many high profile sites

CHAPTER 4. VENDOR PATCH RELEASE POLICY 90

such as The Register and BBC leading to a substantial nunlsengpromised machines [163].
As a final blow the Bofra/MyDoom mass mailing worm was develbpnd used the MS04-040
vulnerability to infect a machines [164]. These three laagale incidents occurred within the 38
day window.

MSO05-054 The original vulnerability related to this patch was pulylidisclosed on May 2
2005, however the vulnerability was described as a DoSkatiad did not carry a high criti-
cality. Microsoft still had not provided a patch after five mtles, at which point it was publicly
disclosed, on November Ql that the vulnerability could allow remote code executiaising

its criticality. Proof of concept code was provided and saftarwards the attack was detected in
the wild [165]. A patch to repair the vulnerability was onBleased on December H3as part
of the normal patch release. This means that the vendor haddys to develop a patch, but it
still took 22 days to produce the patch once it had been deseolas critical.

4.3.4 Conclusion

The conclusion is quite simply that the arguments for a pedtdgase schedule assume all vul-
nerability disclosure is delayed. The benefits claimed withatch schedule are that a higher
quality patch can be released and that end-users can blettesiqd schedule their deployments.
However, when a vulnerability is disclosed instantanegubkese benefits are either lost, moot
or could be better achieved. Patch quality could be achiéast@r by utilising a community
testing approach and scheduled patch deployments are e ifsit is likely to result in an
unscheduled post-incident recovery.

4.4 Advice for implementing a Patch Release Schedule

The prescribed policy is to have two release programs, dredsted and predictable for delayed
disclosure vulnerabilities and one immediate and collatie for instantaneously disclosed vul-
nerabilities. This simple solution is similar to what isesdy supposedly implemented by ven-
dors with their possibility of 'out of band’ patches. Howeubere are problems with the criteria
used to differentiate between when a patch should be relgaseschedule or not. In addi-
tion, specific guidance as to how vendors can most help ead-asd involve the community

CHAPTER 4. VENDOR PATCH RELEASE POLICY 91

to increase patch quality faster is required. The policguised below provides a simple and
effective method for releasing high quality patches angihglend-users minimise their risk. It
first provides a clear criterion for discerning between tpatch release mechanisms should be
used. Then it details how each mechanism can be implemenithdeference to several current
effective vendor practices.

4.4.1 Dual Schedules and Separation Criteria

As mentioned above, a vendor should utilise two release amsims. The first is a predictable
and regular schedule with the other an unpredictable 'wkady’ release. One of the current
criteria for distinguishing when to use which mechanisnyeaps to be risk. If a sufficiently large
risk exists in the form of a significant threat then a patcH b released out of band. Threat
is the deciding factor in the incomplete risk assessmentiwcted, as vulnerability appears to
make little difference. When a worm is released or signifiexploitation is detected, there is
more pressure to release a patch out of band, often in thedbomstomer complaints and bad
press reports. However, if an instantaneously disclosétkvability indicates that a significant
portion of end-users will be vulnerable, then the pressaneatch only appears to come after
a large threat is detected. For example, Microsoft’s defdioc releasing the WMF patch as
per scheduled indicated that their 'intelligence sourckd’not perceive a large threat [137],
and only once significant customer pressure had been broodigar was the patch released
out of band. Thus, the current criteria can be extended tonleeod either threat or external
pressure. There are problems with these criteria. The @noblith responding to threats is
that a widespread and recognised threat does not negateshbifity or existence of targeted
and specific attacks. Vendors should be seeking to mininlisellaerability, not to minimise
significant threats only. The problem with responding teexal pressure is a similar one; once
people are detecting attacks it is often too late, vendaralglbe seeking to prevent an attack in
the first place. In addition, the size of the threat and edligsressure are not an easy to measure
and objective criterion. A vendor’s view of threats abgiedcacross all end-users is naturally a
generalised one, so that while certain organisations mdgdaeg significant threats and others
none, the view to the vendor is only a medium threat. As foemdl pressure, the amount of
'noise’ one group makes is only tacitly linked to the actuallgem. Thus a specific, objective,
and measurable criterion is needed to differentiate betwdech release mechanism should be
used. This document proposes that the form of disclosurkdietiteria:

CHAPTER 4. VENDOR PATCH RELEASE POLICY 92

If a vulnerability is disclosed responsibly then release htch at the earliest pos-
sible scheduled release date. Alternatively, if a vulnéitgthas not been disclosed
responsibly then release at the earliest possible dateriignthe schedule.

This is the most relevant criteria if the arguments givernvabavhich conclude that the benefits
of patch scheduling only apply if a delayed disclosure isuassd, are taken into account. In
addition, this criteria is trivially easy to determine arahcbe objectively judged by both the
vendor and end-users. Vendors should adopt this as thermiisgdactor between a scheduled
release and a critical release and clearly communicatedhiseir end-users to prevent misun-
derstandings.

4.4.2 Predictable Patch Release Schedule

Taking cognisance of the criteria above, the vendor shoaletldp a regular schedule where
patches for vulnerabilities which had their public disciesdelayed will be released. To reiter-
ate, a delayed disclosure vulnerability is one which has Ipgvately disclosed to the vendor.

Most often researchers, who disclose vulnerabilitiesgbely, will synchronise the release of
their advisory for the time at which the vendor releases titelp For example eEye security
maintains a list of vulnerabilities [166] they have repdrte vendors, for which a patch has not
been released and they have been waiting to disclose thasoagl However, on occasion a

researcher will specify a fixed date at which they will diseldheir research. If negotiations fail
and the fixed date is out of the schedule then the customeusddhe informed of the out of band

release. This is a rare occurrence however, and is an exawley vendors should attempt to

maintain good relationships with the security researchroamity.

An important part of creating such a schedule is decidinghenéngth between patch releases.
The difficulty in setting this length is twofold. The first ia choosing a length that reduces
the time available for either the vulnerability to be disemd independently or leaked. The
possibility of a vulnerability being discovered indepentligis only a concern for schedules that
extends over several months. It is unlikely that such anneldd schedule is necessary, as the
majority of patches should not take long to develop and pesticularly since the critical release
will require rapid patch development and testing. In additthere is the possibility of delaying
the release of a patch for a number of schedule iterationmshEsame reasons that the schedule
shouldn’t have too long between iterations, there should beaximum cap on the number of

CHAPTER 4. VENDOR PATCH RELEASE POLICY 93

releases for which a patch can be delayed without very goasbre The second difficulty is
in ensuring that the release cycle is optimised for all eserst The deciding factor in this
optimisation will be how often end-users can realisticalffprd to engage in patch management
activities. Customer feedback and surveys should be ctoeduo gauge the optimal length.
Bear in mind that customers will have a bias towards patclaag often as it translates to less
workload. This bias should be offset by the desire to mingie potential of a leak or separate
discovery, and to keep the number of patches deployed paselto a reasonable minimum, as
offloading too many patches at once makes end-users risgsassats too complex, can impair
the efficiency of monitoring efforts and exposes an orgdinisdo too many threats at once. The
current trend is towards a monthly patch cycle. A charitalslumption is that Microsoft, Oracle
and Adobe engaged in comprehensive end-user discussiah@mesulting choice of a month
is optimised for the above values. However, the needs obmts, the frequency at which
vulnerabilities are discovered and the speed at which patcan be developed are all dependant
on the vendor, and as such this value cannot be generaliseskad| vendors.

One potential concern of an 'industry standard one montbhpeglease’ is that administrators
may be flooded with several patches from separate vendotseosaine day creating the same
problems a vendor was trying to avoid. Alternatively, if thatches are released on different
schedules at different times of the month, the problem ofstamtly applying patches which
schedules try and minimise is re-created. This is a diffipudtblem that will affect end-users
with multiple vendors for which vulnerabilities are regijareleased. While automated patch
deployment solutions will help with the deployment and afistion of these patches, they pro-
vide little support for the larger and more time consuminglpem of testing them. Ideally,
end-users will standardise on manageable baselines. | lb&ih the vendor’s interest to forge
connections between vendors whose software is commontyinsnjunction with each other
to ensure that the number of patches released at one timespreédka minimum and interact
correctly. In addition, planning for patches to be releas#hin short gaps of each other would
allow end-users to better plan deployment and manage $hiiea if all patches were released
on the same day. While this 'multiple vendor’ problem is guitnited at the moment, as more
vulnerability research occurs and consequently the nuoilqgaitches released grows, this prob-
lem may become worse in the future. Once such example of thtghewendors problem was
on July 13N 2005 when patches from Microsoft, Oracle, Mozilla and Appkre all released
on the same day [167]. Granted, only two vendors engaged iadigiable release, but even if
end-users had been aware off all the patches released, smnesers requiring all the patches
would be forced into an awkward triage.

CHAPTER 4. VENDOR PATCH RELEASE POLICY 94

As privately disclosed vulnerabilities must remain prévantil a patch is available, a discreet,
secure and confidential group of developers should be taskbdnanaging security patches
and vulnerabilities. This is particularly true in open smvendors where the development is
by its nature, open. The majority of vendors already havé sugroup implemented, and it is
only mentioned here as a requirement in passing. The merab#rs group should be held ac-
countable for any leaks and given the required access taestisy can develop patches quickly.
Given that patch development cannot be a task assigned t@lhamd constant group and by
its nature spans all development and developers, mechaufiigsrtemporarily bringing in other
groups of developers, testers etc. need to be developediveittame levels of confidentiality
and accountability.

4.4.3 Critical Patch Release

The critical patch release mechanism will seek to releasgch@s soon as possible after the dis-
closure of an instantaneously disclosed vulnerabilityerehthe vulnerability was not privately
disclosed to the vendor before hand. In this situation timelgewould be informed of the vulner-
ability at the same time as the general public. This doeslaatys occur through the release of
a vulnerability advisory. A zero-day exploit could be prded or a vulnerability advisory could
be accompanied by proof-of-concept code. In all of theseastns, a vulnerability has been
instantaneously disclosed. Currently, some vendors@jrekim to have implemented such a
critical release strategy. However, as discussed abogagliease mechanism is only invoked at
a subjective point determined by the vendor. In this versiba disclosure type of the vulnera-
bility is the only appropriate discerning criteria. If a merability has been privately disclosed
and, before the chosen patch release date the vulnerab#ityer leaked or discovered indepen-
dently and publicly disclosed, a decision to shift the pdtoim a scheduled release to a critical
release should be made.

Once it has been determined that a patch should be fasettarid released as part of the critical
patch release mechanism, a vendor should seek to engagentineunity of end-users to help

ready a patch. The arguments discussed in section 4.3.8ctilged the benefits a community
can provide, and how keeping the details of a patch secrétral@ase are counter productive.
The possible help a user community could provide is as laraiehuman imagination. Whether
itis documentation, vulnerability scanners, workaroyigisd party patches or vital testing; with

the right motivation the skills of technical administrat@an be leveraged. The work required in

CHAPTER 4. VENDOR PATCH RELEASE POLICY 95

developing and delivering high quality patches has a higéllef commonality across patches.
This is not to say that the vulnerability and related fix aregme, but that all patches require, for
example, testing and documentation. A vendor should eratetre required tasks and highlight
those where community support could provide a benefit. @a-t¢iollaboration tools to enable
the community to engage in the required tasks should be gedvi Most often these simply
consist of an on-line forum; either a mailing list, forum tsedire, wiki or bug tracking program
such as bugzilfacan be employed. Peripheral benefits aside, the most spacdibeneficial
area of community involvement is in testing. By providingla or beta quality patches for early
download, and sharing information on what has been suadbssfsted, a community can get
involved. If multiple beta versions of a patch are to be redel enhancing or providing a patch
roll-back mechanism would be one area where tools could belaleed to aid testing.

A possible concern is that end-users would not be interasted@ploying patches that are not
at final release quality. However, end-users would not béyagpbeta patches directly to their
systems. An effective patch management policy should awagtiude a comprehensive testing
strategy as discussed in section 3.2.3.4. In such a set-pateh should be deployed without
any testing, and the same would apply here. There are betweéitsl-users getting involved in
testing. By testing the patch on their specific configuratiorend-user can ensure that the patch
finally released works correctly for them. In addition, if atgh appears to function correctly it
could be deployed early to machines that warrant it. Pdartyusince testing has a ’long tail’
where the initial work is in testing common configurationsethapply to many users, whereas
the later tests usually only apply to a few users but requsrenach work. Once testing is
completed on the common configurations, many users couldylépe patch sooner or at least
get a head start on testing. For example, if a vulnerabilityarily affects the Chinese version
of a vendor’s product, releasing the patch once the Chinesandentation is ready would allow
the majority of users to start their deployment without hgvto wait for all translations of
the documentation to be completed. The testing providechbyenhd-user community would
allow the vendor to test different configurations faster #me 'release-when-ready’ approach
would allow more end-users to deploy patches and henceatattieeir vulnerability sooner. The
only cost is a slight increase in the amount of testing peréat by some end-users. However,
the size of the community will usually help to ensure no oné-eser’s testing time increases
dramatically, as the work is distributed and testing penied by one group can benefit many
more with similar configurations. Thus, many end-usersatoahtinue as they do now and wait
until the final release of the patch.

Shttp://bugzilla.org/

CHAPTER 4. VENDOR PATCH RELEASE POLICY 96

This release when ready approach can only help security dsdépg the availability of vulner-
ability remedies. Only faulty patches being deployed ordpation machines would invalidate
this. Thus, the vendor must emphasise that only the finalymtozh release of the patch should
be deployed to production machines and all beta releasedtdb@tested in a sand-boxed testing
lab. There is then the possibility of two advantages. Theifithat the testing feedback provided
by the community will speed up the vendor’s testing processlting in a patch being available
sooner. The second is that the patch, if it passed some caoatiignis testing, could be deployed
sooner to some end-users without having to wait for everyigoration to be tested.

The vendor should work hard to ensure all feedback is castest@d into a quality patch as soon
as possible. With proper encouragement, embracing the coityrprototyping approach will
help to cut down on the window of exposure from disclosurd arpatch is available.

4.4.4 Encouraging Delayed Disclosure

Given the benefits evident when a patch release scheduledsfaisvulnerabilities which have
had their disclosure delayed, it is in the vendor’s intetesincourage delayed disclosure of vul-
nerabilities. Much discussion is available in each of theeldisure policies discussed earlier on
how to maintain an amicable relationship between the veaddrsecurity researcher. Vendors
should make an effort to maintain positive relationship$hwhe security community and vulner-
ability researchers in an effort to reduce the instanceasibintaneous disclosure. Researchers
too should consider how to best minimise risk to end-useewvdisclosing vulnerabilities, how-
ever that is outside the scope of this discussion. Two vendantrast quite differently in their
approach to this. Microsoft has done quite well in builditeyelationship with researchers over
the last couple of years. There are few examples of recenicpuulitcries by researchers who
feel the vendor is not providing the patch within a reasomadibhe-frame. In addition, throwing
parties for security researchers at conferences such akHE&[168] and outreach events such
as BlueHat [169] have further helped to build a positivetreteship. Oracle on the other hand
has created controversy by taking too long to fix some bug3][Bnd providing poor fixes even
after these extended periods of time [171]. This has reduita negative perception of Oracle’s
patch release process and may decrease the chances atmesearorking with the firm.

Another approach which has proved quite successful is tigebmunty program run by the
Mozilla foundation [172], where $500 is awarded for eachvasly unknown security bug dis-
covered in Mozilla software that is privately reported te foundation. The foundation claims

CHAPTER 4. VENDOR PATCH RELEASE POLICY 97

that the bounty program is working well. As of December 200&ythad awarded $2 500 in
bounties since its inception earlier that year [172].

Additionally, relationships with security researchers t@ smoothed by providing a clear and
accessible description of how the vendor’s organisatidhrespond when vulnerabilities are
reported. Defining time frames in which contact will occun ¢eelp to manage the expectations
of the researchers.

4.5 Conclusion

This chapter has provided a discussion around the benefltdiaadvantages of implementing
a patch schedule. This discussion has provigguiori arguments on how patch schedules in-
fluence risk and are influenced by disclosure. These argwhent shown that patch schedules
provide two benefits to end-users; the first is a higher quphttch with less chance of a fault,
and the second is a predictable schedule which allows eaid-tsplan their resources and patch
deployment reducing the surprise factor and helping tanate patching as a normal business
process. However, the argumentation also showed that bleesdits do not accrue or come at too
high a cost when the vulnerability has been instantanealisgfosed. The patch quality could
be achieved better by releasing patches early as betas ambgaommunity support. Although,
this cannot eliminate the "surprise factor” in these instndue to the unpredictable nature of
threats. To remedy this situation it is proposed that vendmaintain their patch schedule only
for delayed disclosure. The type of disclosure forms a @edrobjective differentiator for which
patches should be scheduled and which shouldn’t. In thetipastifferentiating factor had been
a subjective threat assessment. In the situation of irestapusly disclosed vulnerabilities ven-
dors should implement a critical release strategy thatisele a beta of a patch to a community
as soon as possible, allowing more testing to occur and giraybenefits to end-users and the
vendor.

This chapter has provided a discussion on how vendors céer beinage the risk end-users face
by patch release cycles. In the next chapter practical amithéale tools and solutions that can be
used to ease the burden of the patch management policy skxturschapter 3 will be discussed.

Chapter 5

Practical Solutions

5.1 Introduction

"l need automation to deploy patches, | do not want autompttdh manage-
ment."
—Tim Rice, Network Systems Analyst, Duke University SchafdVledicine [39]

Some technical discussion is provided as to how aspectddi pganagement can be improved
upon with technology. The focus is first on the packaging asttidution of patches and second
on additional measures that can be used to limit the vulmgyabf systems until a patch is
deployed.

5.2 Patch Management Software

In section 1.2 the timeless nature of patch management waslited. Patches have existed
since software has existed and they have always been teaoludifficult to manage. In 1985
Larry Wall made distributing and merging patches to souotkeeasier with the introduction of
his patchutility [26]. In the 1993 operating system vendors introeddools to help automate
the process of keeping software up to date [173, 174]. In Xefvare that allowed for the
management and deployment of standardised patches acubtgglenoperating systems was

98

CHAPTER 5. PRACTICAL SOLUTIONS 99

proposed [175]. Advance to the present and we see that tootsehage application updates
have become a mandatory part of an operating system and ag@dpatch deployment software
has become a growth industry with a flood of new patch managepreducts and tools. A
report on the patch management industry showed that saelsee $80 million in 2003 and the
number of direct competitors topped the 20 mark[176]. Whils many 'solutions’ available it
is tempting to believe the problem of managing patches has belved. This section exists to
critically classify and analyse the many types of patch rgangent software and demonstrate
which parts of the patch management process described tiors&2, have been and can be
automated. The premise which introduces the need for sudii@/ pand which is discussed
here, is that: while patch management products fill a necgssapose, they can only help
by automating task necessary to patch management, butangeenate tasks sufficient for patch
management. The thorough understanding of the patch miaree@rocess provided by section
3.2 demonstrates the difficulty of complete automation hiorsthis section concludes that patch
management is too complex, with too many variables requiexperience and human decision
making, for it to be completely automated. To quote Brucen®ar [41]:

“If you think technology can solve your problems then you tlanderstand the
technology and you don’t understand the problems.”

This is not to say that nothing can be automated. Patch marexges necessary because of tech-
nology, and is an apt example of the productivity paradox[1Where technology introduced
to save time has resulted in a new set of time consuming prabld@hus, patch management is
dependant on technology and can benefit from it.

5.2.1 Functionality and Classification of Patching Tools

Simple put, there are a large number of patch managemerst tBaleference providing a col-
lection of reviews of some of the products [178] lists 22 camps, some with more than one
product, providing various forms of patch management smuEach product implements vary-
ing levels of functionality. Most often patch managememidurcts are differentiated simply on
whether they utilise agents which must be installed on tieachines, or not. This is a sim-
plistic differentiator of functionality, but is mentioned several places while discussing patch
management software[46, 91, 94, 179]. A discussion on teefiagents is available in section

CHAPTER 5. PRACTICAL SOLUTIONS 100

5.2.2. The Gartner Group has described nine charactertbat an automated patch management
solution should contain [180]:

e The ability to create and maintain an inventory of systentdutting information about
installed software and running services. It should be abtidcover new systems without
the need to distribute an agent.

¢ Information on the software and patch revision level of esaitware component on each
system.

e Automatic evaluation of patch dependencies and trackingha¢h patches are out-of-date
or superseded.

e A dynamically refreshed patch inventory and ability to slifisthe patch according to
severity.

e Reports on what patches are needed on which systems byatorgahformation from the
various inventories. This should take into account theesy& role.

e The solution should provide for system groupings to allondostracting many machines
into one group. The system should also allow for role basbdHaistration to allow dif-
ferent parts of the work-flow to be executed by different sqle.g. Quality Assurance).

e A scalable patch distribution and installation methodypdimg for patch roll-back if nec-
essary.

e The system should be cross-platform, especially given rmumitdevices including servers,
network devices such as routers, handhelds, cell phonethatmeed to be supported.

e The solution should leverage existing software for patchhage@ment and only introduce
a software agent where necessary.

While these criteria are fairly comprehensive, in an eapigblication of this work [95] it was
noted that they are not completely comprehensive and deasdditional ideal characteristics
were defined and on which this list builds.

CHAPTER 5. PRACTICAL SOLUTIONS 101

e The system should be secure. Being able to automaticallloglepalicious content to
an entire organisation by compromising one distributioarse is a tempting target for
attackers [181]. While all applications should attempt éodecure, patch management
tools are both a security critical application and a moreljikarget for attacks.

e Patches are being issued from multiple vendors and a patoageanent solution should
support this to prevent the need for multiple redundanttpatanagement systems.

e The purposes of patches are to remediate vulnerabilitiestelis not always a one-to-one
mapping between vulnerabilities and patches. The syst@mldimaintain as complete
as possible an inventory of vulnerabilities with the abpitiv test if the vulnerabilities are
applicable. This is particularly useful for confirming if atph is effective in mitigating a
vulnerability.

e Provide detailed and powerful reporting mechanisms thatvahformation for risk man-
agement decisions to be easily gathered.

¢ Integrate with other security mechanisms to minimise wahgity, particularly during the
window of exposure between vulnerability disclosure andipdeployment.

The wordsfunctionality’ and’capability’ are often used as synonyms, however for the purpose
of this discussion they shall be used to represent two distioncepts. What we notice about
the list resulting from the combination of the Gartner's &ad our own, is that some points are
discussindunctionality, for example “an inventory of available patches should bgémented”,
and other points are discussing ttegpabilitiesof that functionality, for example “the system
should be secure”’Functionality’ will be used to discuss core features that directly support
and enable one of the policy elements described in sectan '&apability’ will describe a
general feature intended to modify one or more of the funeticomponents. These capabilities
will imply extra functionality, but the scope of the discims prevent examining them. In the
introduction to the policy framework described in chaptgt @as noted that patch management
integrates with several other management fields; assetgaarent, vulnerability management,
change management, configuration management and risk sraeagy Patch management tools
demonstrate this integration. A summary of the policy dsseal in chapter 3 is available in both
figure 3.3 and table 3.2. If we distill from this policy the fttronality which can be supported
by an automated system, seven distinct areas of functtgrat found. These seven primary
functional areas are based on; Gartner’s ideal charatsriautomated functionality discussed

CHAPTER 5. PRACTICAL SOLUTIONS 102

in chapter 3, the functionality available in some existiogl$ and the authors own insight. They
are:

1. Notification

2. Inventory Management
3. Vulnerability Scanning
4. Patch Testing

5. Patch Packaging

6. Patch Distribution

7. Reporting

These functionality areas are groupings of similar fumioFor example, inventory manage-
ment would involve asset inventories, a patch databasevantory of vulnerabilities etc. With
the functionality isolated from the original list, we cantthe same with capability. The resulting
capabilities are:

1. Allow arbitrary grouping and classification of inventsi

2. Support patches from multiple vendors

3. Provide a portable cross-platform implementation

4. A focus on security, with regular authentication and atitfation of patches

5. Integration with other security applications

A brief discussion on each functional area is provided inftilewing sections. This is intended

to be a technical discussion focusing on how automationgppa@t a patch management policy.
The concepts are only briefly introduced, as it is hoped affidlvestigation and implementation
of such a patch management product will be part of futurearese

CHAPTER 5. PRACTICAL SOLUTIONS 103

5.2.1.1 Notification

To ensure accurate risk assessments, as described ims&&id.2, can be made, it is necessary
to receive regular notification of three aspects of the rigkagiort:

e \Vulnerabilities
o Patches

e Threats

Vulnerability A method of discovering new vulnerabilities and notifyinthe patch and vul-
nerability group is required. There are many vulnerabdayabases, each of which provide some
sort of notification service. The rise of XML based RSS and ATfeeds for easy syndication
means that these notifications could easily be integratedaim application, something vendors
should be encouraged to provide. Thus an ’interrupt’ apgrazan be used, where notifica-
tion will arrive when relevant as opposed to requiring an idstrator to engage in 'polling’ by
searching through busy mailing lists such as BugTraq. Famgte the National Vulnerability
Database provides two feeds, one of all CVE vulnerabildies one with deeper analyses [182].
The Open Source Vulnerability Database (OSVDB) [183], &ex{b2], ISS X-Force [184] and
SecurityFocus [185] vulnerability databases all provigedscated XML feeds. OSVDB goes
one step further and provides an XML-RPC interface for dyicaeal-time queries of the vul-
nerability database. There is a large amount of redundaatyden databases and selecting
one vulnerability database as a source, with recourse ayofor further research is preferable.
There may be some lag in databases adding information canitasteously disclosed vulnera-
bilities, however the automated notification will save asiderable amount of time compared to
manual trawling of mailing lists.

Patch Similar to the vulnerability notification, many vendors pide XML feeds in order
to improve notification of released patches. For examplerddiaft [186], Debian [187] and
FreeBSD [188] all provide XML feeds of their latest patch€ke flexibility of XML can easily
allow feeds from relevant vendors to be aggregated andefiltéor vulnerabilities affecting an

1These aspects are enough to determine risk based on affgstedn’s criticality, but such an assessment should
still be done by a human agent.

CHAPTER 5. PRACTICAL SOLUTIONS 104

organisation’s deployed software. For unscheduled paielases the automatic notification can
allow an administrator to be notified immediately and reagtkjy.

Threat Threat notification is more complicated due to the intrircdmplexity of the threats.
Some threat notification can be automated, particulariy wabls that support correlating and
aggregating information from multiple network sensorsol$such as Squil [189] or DeepSight
Analyser [190] allow for the information from multiple netrnk monitoring devices to be cor-
related at one monitoring console. Threat managementcesrguch as DSHIELD [55] or once
again DeepSight Analyser can be used to detect wide-sdalekat Specific attacks can be dis-
covered through the use of Intrusion Prevention Systemshandy pots, where the first uses
signatures to detect an attack and the second can provigdétimsto an attacker's methods, or
distract an attacker from real systems. A discussion ofriefén depth tools is available in sec-
tion 5.3. Whatever monitoring devices are used, the inféionanust be correlated to provide
effective notification. Too many false-positives will ré¢&Sn the sensor being ignored.

5.2.1.2 Inventory Management

This is a broad functionality group and one of the most alticBased on the discussions in
section 3.2.3.1 we can see that the three primary investeeiguired are:s

e Asset inventory
e Patch inventory

¢ Vulnerability inventory

Asset Inventory In section 1.3 the difficulty of managing many patches for ynauinerabili-

ties in many software products and deploying them to manyhinas was highlighted. Section
3.2.3.1 discussed the need for proper asset managemests @alunction that can benefit greatly
from automation. The process of discovering and enumeralirihe hosts on a network, all the
software on each host and the patches both available aradl@stan be time consuming and
tedious without automation. Most patch management toaisaoo some combination of these
inventory management tools, allowing an administratordthkautomatically populate the in-
ventory and better organise and track the large amount ofrirdtion this will create. Advanced

CHAPTER 5. PRACTICAL SOLUTIONS 105

inventory management systems function as reporting tdlolwiag arbitrary, ad-hoc queries of
the state of the inventory. These queries can provide viduatormation when performing the
kind of verification and reporting described in section 3.2.

Patch Inventory An inventory of all available patches is a basic requirenoéra patch man-
agement system. This will be populated with patches diseav@uring the notification process.
The primary benefit of this inventory will be in helping minse the number of patches required
to be reviewed in a patch management process. By resolvinisarnal patch dependencies,
for example excluding patches which have been supersedadtamatically resolving the order
in which patches should be installed. Further optimisatidibe provided by a cross correlation
with the asset inventory to exclude patches for softwareénstélled or patches already installed.
Providing user modifiable areas so that testing notes aret dibcussions about the patch can
be added is useful, particularly if the patch and vulneighiroup wants to create a centralised
organisational patch database.

Vulnerability Inventory The purpose of patch management is to resolve known vuliierab
ties. Thus, a database of know vulnerabilities is requifidds database will be populated with
the high quality vulnerability information available fromulnerability databases. Beyond listing
a CVE number and the affected software, vulnerability estdould include information from
the OVAL project [191] which provides a standardised XML asota [192] for describing how
a vulnerability can be verified. This could be integratea iatvulnerability scanner discussed
in the next section. This database too should correlatedrnrdtion with the other databases to
display how which vulnerabilities affect software actyaleployed in the organisation.

5.2.1.3 \Wulnerability Scanner

The difficulty with managing vulnerabilities is that theyeaan unknown risk. It is difficult to

guantify the expected number of vulnerabilities in a prdacaefore the vulnerabilities are an-
nounced. When a vulnerability is disclosed the possibdftg risk is created, however whether
that vulnerability is applicable to the specific configusatof an organisation is not clear. De-
termining this is not an easy task. This is particularly tiruéhe cases when little information is
provided with the vulnerability or it requires a complex eépre-conditions to be true. To help
an administrator in this task, vulnerability scanners camuged. Vulnerability scanners do not

CHAPTER 5. PRACTICAL SOLUTIONS 106

mitigate the vulnerability, that is the job of the patch,ithmirpose is to discover the existence
of a vulnerability.

Given that not all vulnerability disclosures provide enbugformation with which to generate
a verification mechanism, sometimes the only verificaticaat tan be performed is to ensure
the patch has been correctly installed. This verificatioousth not be part of the vulnerability
scanner. The vulnerability scanner should be able to inudgly test for vulnerabilities and
hence independently verify whether they have been suadbssfmediated by a patch.

Network-based vulnerability scanners attempt to inteateghe machine remotely and should
be used on all machines that are being patched. Local viiitigracanners usually require the
installation of software on a machine and can be more timsuwming to set up. Local scanners
should be used on critical server and machines that prova dccess accounts. Local scanners
can usually perform a more in-depth scan, involving issueb as configuration vulnerabilities.
While network based vulnerability scanners are limited teatvthe machine presents to the
network, which in the case of some machines may be very.litenerability scanning can
quickly become quite complex, and scanners usually onlydan a subset of functionality. For
example web applications have specific vulnerability sganmequirements that are different
from interrogating open ports for vulnerable services.

5.2.1.4 Patch Testing

Software to support patch testing is notable only in its abseVirtual machines were discussed
in section 3.2.3.4. They can provide a cheap method for pieing several different machine
configurations on one physical machine, saving hardwarts.cd$owever, they are limited in
that testing hardware specific interactions is poor, fongxa hardware drivers [109].

In observing the policy, testing of patches is the step yikelrequire the most amount of time,
and is the only defence against threats from faulty patddeshod that allow regression testing
of patched applications and software to be narrowed in scopkl potentially provide a dra-
matic speed increase in deploying patches. By tracking ¢perndencies of the software being
patched and particularly the dependencies of the patchegaoent, a list of components most
affected by the change introduced by a patch can be geneMtegth of this scoping is currently
done manually, for example if there is a patch to Mozilla féixés handling of JavaScript web

CHAPTER 5. PRACTICAL SOLUTIONS 107

applications that rely on JavaScript should be the focussifrig instead of the print functional-
ity. Applications such as Microsoft'Strider, or Sun Microsystem’sowhat[110] can provide
this insight. In addition a well maintained patch datab&se includes testing notes, could al-
low patches with similar dependencies, that are re-issuédked via a dependency can help to
prioritise tests that previously displayed problems.

5.2.1.5 Patch Packaging

Due to the proliferation of package managers and theiregélpatch formats such as Debian’s
.deh RedHat’s.rpm, FreeBSD’s ports and Microsoftmsithere is a lot of functionality that has
been placed in the patch distribution format, or packageei@téaspects of patch packaging are
discussed below.

Dependency Tracking Many of the complexities of patch dependencies can be auitcetig
resolved by providing enough information in the packagifighe patch. There are several
different types of dependencies that could occur. The digreey types used by Debian’s .deb
package format are used as an example [70], as the depeesi&ativeen thousands of open-
source projects are difficult to maintain, and Debian’s ARS h history of performing this task
well.

e Depends - package A depends on package B if package A cammetitinout without
package B. In the case of source packages this is furthengeased into packages re-
quired to compile package A (build dependency) and packaagpsred to run package A
(run-time dependency). This is a hard dependency.

e Recommends - package A recommends package B if the packagamer decides that
most users would only want package A with the functionalitpackage B.

e Suggests - package A suggests package B if package B isk&dade enhances the func-
tionality of package A.

e Conflicts - package A conflicts with package B when packagemaotarun with package
B installed. This is often combined with 'Replaces’ as catsdliusually occur between
packages providing the same functionality.

CHAPTER 5. PRACTICAL SOLUTIONS 108

e Replaces - package A replaces package B when package Arcositailar files to package
B that would result in the files from package B being replaceoverwritten if package A
were installed at the same time.

e Provides - package A provides package B when package A haathefiles and function-
ality as package B. This is an abstraction of functionalionf a package as often several
packages exist to fulfil one purpose.

This dependency tracking needs to be implemented in a packegagement solution, and
should not be implemented in the specific patch package. Hawthe quality of dependency
tracking is directly related to how much information is pided by the actual patch package. An
alternative would be to provide the dependency informatiwaugh another channel, and min-
imise the patch package. Either way, detailed dependemfasmation will ensure that patches
are installed smoothly and in the correct order with cordlininimised.

Binary Patching Once the patches are fetched the dilemma of whether to eefih@centire
binary or use a binary patch is presented. Microsoft usedrpipatching techniques in the
past, but decided to stop due to the unpredictable behaeteated by differing configurations.
Investigation into binary patching algorithms will be caretied and an option to either patch the
binary or replace it in its entirety will be given to the admsinator. The advantages of binary
patching are a significantly reduced distribution time eesally for the often small changes that
a patch performs. The created patch and relevant docurientaitl then be stored in a patch
database. This is separate from the systems database aslibedeneficial to have this database
available to the Internet as a whole. This would allow orgations to learn from each other’s
patching techniques and reduce effort. This is best sunsetin a quotation from Mykolas
Rambus, CIO of WP Carey, “It would take an industry body - aprofit consortium-type setup-
to create standard naming conventions, to production testsane number of these things, and
to keep a database of knowledge on the patches so | could jpakat other companies like
mine did with their patching and what happened.” [39] It ip&d that instead of a consortium,
a community could be created to share their experiences.

Traditionally patches are distributed by packaging filebeaeplaced instead of packaging the
differences between the two versions. The advantage ofaldédional method is that the same
package can be used to upgrade from any (or many) previosigusior for new users to perform
a fresh install. Thus, the software maintainer’s job is medgier. However, if the difference

CHAPTER 5. PRACTICAL SOLUTIONS 109

Patch Tool
bzip2 compression xdelta bsdiff
Binary bytes percent | bytes percent bytes percent

gaim| 317 699 100%| 3 877 1.22% 782 0. 25%
gaim-remote, 4 979 100% 157 3. 15% 140 2.81%
Isusb| 20 673 100%| 17 837 86. 28%| 15 731 76. 09%
usbmodules 5 040 100%| 3 815 75.69%| 2 944 58. 41%
BSDIs->GNUIs| 36 026 100%| 36 919 | 102. 48%| 37 604 | 104. 38%

Table 5.1: Table comparing file sizes of different methodgistributing the same file.

from one version to the next is only a small change, the uskstill be forced to download a
full copy of the new software. An alternative is to package ithcremental difference between
the two files: this would result in smaller patches, paracyl when only a small change has
been made, as is often the case with security patches. Bslaxcomparison of two binary
patching tools, namely Xdelta [193] and bsdiff [194]. As danseen in the table 5.1 and figure
5.1 produced in an earlier work [111], the binary patchewvipgeanywhere between a 90% to
25% reduction in size compared to a full binary download. Tds example was a test case
where two completely different files were used (i.e. thereew® similarities between the two
files).

However, there are some disadvantages to binary patchema#ylpatch can only patch from
one specific version to another, thus if the end user is likelgave several different versions
of a vulnerable software package, multiple binary patchey tmave to be distributed. This
can sometimes make a binary patch larger than a traditicatahpthis is certainly the case
with Microsoft’s binary patching [195]. With careful padg@management this risk can often be
mitigated by tailoring the delivered patches to the systesgsesting them (i.e. a semi-intelligent
patch tool) or by attempting to keep software versions ik{siep. The last disadvantage is that
it is harder for a software maintainer to manage binary pegetith one version bump requiring
several binary patches to handle users who are not runnénigitmediately previous version, as
patch will be required for each version to the current. Thia process that can be fairly well
automated.

Patch Authentication A vendor provided patch provides a central point of failuve dvery

application that will deploy that patch. One it is distriedtto a client's own centralised patch
deployment system, a central point of failure persists flomachines within that organisation.
Thus, the patch needs to be authenticated every time ittishdited. This is quite easily solved

CHAPTER 5. PRACTICAL SOLUTIONS 110

Binary Patch Tool Comparison

gaim gaim-remote Isusb usbmodules BSD Is -> GNU
Is

o a A
o = N W

Patch
Method

W download
B xdelta
M bsdiff

Log(Size in bytes)

O =~ N W A O O N ® ©

Binary

Figure 5.1: Graph of the effectiveness of binary patch tools

using public key cryptography. Providing a public key withish users can verify communica-
tions and patches signed by the vendor’s private key cargmsipre that patches are not tampered
with. A model of how this can practically be achieved in osence projects is provided in the
Strong Distribution HOW-T@196], and is expanded on by Sohahal.[197]. However there are
practical problems that often occur, where users do nottegtiair stored copy of the vendor’s
public key, or vendors do not correctly sign patches [198Blvd assume the vendor is behaving
correctly, many of the tasks for authenticating packagesbmautomated, and should be, at
every point possible. Particularly once it has been dowdddarom the vendor, and once it is
downloaded to a client machine.

Patch Back-Out Providing an effective back-out mechanism to allow chang&educed by
patches to be undone would go a long way to minimising theniatethreat of a faulty patch.
For some patches this can be quite a trivial process, wheifde¢l updated are merely reverted to
their original form. However, in some cases the changesduice features that are not backwards
compatible. For example if a database schema is changedesngata added to the database
cannot easily be converted to the previous schema withmsiderable effort. Several vendors
provide roll-back mechanisms, however these are not alwsgd.

CHAPTER 5. PRACTICAL SOLUTIONS 111

5.2.1.6 Patch Distribution

Most current solutions distribute their patches via eithesingle server or several servers de-
pending on the size of the organisation. This method is vegificient and subject to dangerous
denial-of-service (DoS) attacks. The advances in pe@eta-distribution should not be ignored,
and protocols such as Bittorrent [199] or other rapid disttion methods could provide benefits
in mitigating DoS attacks against central distributiontcest This will have the advantage of a
reduced bandwidth load on the distributing server [200§ provide greater security as many
more machines will need to be compromised to distribute @cioak binary (assuming the initial
upload is correctly authenticated). The public key infnastiure discussed in section 5.2.1.5 can
be implemented. The server component can be given a seotdtap whose public component
is published to the network. This would allow for each patibé signed by the root server’s
key and the agent to verify this by checking against the ghblil root key. Additionally, de-
ployment can be easily scheduled to occur at certain timpgapate to the organisation, even
when there is no one present, allowing unattended insthlise critical patches to occur with
minimal interference.

5.2.1.7 Reporting

Before a patch can be applied to mission critical servergp#ieh needs to be tested with the
current system configuration, and processes for removiegatch are usually drawn up. This
can take a large amount of time to troubleshoot, which oianés the system administrator in
a dilemma, to deploy the patch and risk losing critical sssior not deploy and risk a security
breach. To resolve this a system administrator require® imbormation on the possible effect
an exploit could have on his organisation. Reporting is themajor advantage of such a project
due to the decision making benefits.

Reporting should involve extensive correlation of infotioa between then vulnerability, patch
and hosts inventories, this should be extended with inftonayleaned during the deployment
process, such as patch and vulnerability verification mgtion. The ability to create ad-hoc
gueries into this data would allow an administrator to rgpahd accurately get data relevant to
the risk management decision making. Additionally, otlasks such as metrics and trends can
be extensively supported by a well implemented reportimgtion.

CHAPTER 5. PRACTICAL SOLUTIONS 112

5.2.1.8 Summary

Table 5.2 provides a summary of the functional areas andaies tperformed in each.

5.2.2 Architecture

“The entire agent vs. agentless debate [is] a red herring.”
— Mark Shavlik, CEO of Shavlik Technologies [179]

A brief discussion on the nature of agent-based versus lagergatch management solution is
included here only because it is discussed in nearly evepgrmpan the subject [46, 91, 94].
However, we believe that this debate is essentially a prapda war between various vendors
attempting to sell their product. The quote at the beginwindpis section has been deliberately
taken out of context. It was taken from a paper entitBsturity Patch Management: Break-
ing New Ground179] published by Shavlik, vendor of the HFNetChkPro pat@magement
solution. The title does not reveal that the paper is actumlliscussion on the agent versus
agentless debate, and sides strongly with agentless tegyndt is not surprising to learn that
HFNetChkPro is an agentless solution. The paper contaimadrdoer of unsubstantiated and
demonstrably untrue claims, and of its meagre five refeeraee is referring to semantic web
intelligent agents and appears to be quoted incorrectlyishake the author makes is to compare
deployingpatcheswith agentless technology to deployiagents and patchesith agent-based
technology, even though the agent would only need to be geglonce. We believe that papers
such as this and the resulting marketing hype as vendomnatitie advertise their selectively
agent or agentless solution as the best architecture hasbcded to the amount of time that
has been devoted to this debate. Agent and agentless sslatie both necessary for a patch
management solution, and many tasks required for patchgeament can be done using either.

5.2.2.1 Agentless

And agentless or non-agent architecture should techpiballable to operate without utilising

any software installed on the client machine, thus limitihg server to things such as blind
vulnerability scans. However, in reality “agentless” isially used to refer to the fact that no
additional software is required to be installed on the t|iand standard remote administration

CHAPTER 5. PRACTICAL SOLUTIONS 113

1. Notification
¢ Vulnerability
e Patch
e Threat

2. Inventory Management

e Network hosts inventory
e Host software inventory, including patch level

¢ Available patch inventory with dependency tracking
¢ Vulnerability inventory

3. Vulnerability Scanner

e Remote network scanner
e Local host scanner

4. Patch Testing

e Virtual Machines
e Test scoping

5. Patch Packaging

e Authentication & Authorisation
e Compression
e Back-out

6. Patch Distribution

e Scheduler
e Distribution

7. Reporting

e Correlate information sources (hosts, software, patchdsgrabilities, verification,
time)

Table 5.2: Patch Management Automation

CHAPTER 5. PRACTICAL SOLUTIONS 114

tools are used. The use of these administration tools aradoithe same essential functionality
as an agent-based architecture. The upshot of this is tleaicdurages the use of standards,
as default remote administration tools are used, instepdogirietary communication protocols.
However, given that the agentless solutions often onlyhsedmote administration capability to
deploy executable content (an agent), this is limited aeditaiters between agent and agentless
software become murky indeed. Given the difficulty of dragvéclear distinction between agent
and agentless software, and the inadequacy of the “anyi@olaisoftware required” definition,
we will provide a slightly different, but functionally usdfdefinition.

Agentless technology is limited to a pushing patches tantdiethis is an ’interrupt’ approach
where patches are pushed when they arrive instead of a madbaolling’ approach when
clients regularly query the server for new patches. Pugb@tghes is limited in situations where
machines are not connected to the network during the paglytaent, requiring the server to
perform the same 'polling’ as an agent, albeit in reversegtiect when disconnected machines
re-join the network. Conversely, this approach is quitdulse the case of new machines joining
the network that might not have had an agent deployed to tle¢owin situations where an agent
has failed, possibly due to conflict caused by a new patchs,Tdruagentless approach is both a
necessary and sufficient part of an effective patch manageso&ution.

5.2.2.2 Agent

With agent-based architecture there is a central serveshwdan serve patch files and an agent
that is installed onto the client machines to perform loaaks. The amount of work performed
by the server and the clients varies greatly depending ofetitare set of the product. Agent-
based patching can use either push ’interrupt’ or pull ipglitype patching. With agent based
patching, when patches are pushed to clients the servet@sita connection to the client ma-
chine’s agent and instructs it to deploy the patch. Whenheatare pulled the client machine’s
agent will initiate the connection to the server, copy thielpadeploy it and report back to the
server. Pushing patches allows a server to push patcheembschs soon as the patch is avail-
able. This can help in reducing the time to patch. Howevea, niachine does not receive the
push instruction, the patch might not get installed. Thipasticularly pertinent with mobile
devices which are often are an increased risk as they alldwanato piggy back its way past a
firewall. With pull based patching, the mobile device care’ck-in’ when it is back withing the
organisation instead of having to wait until the next paklease cycle. Ideally an agent based

CHAPTER 5. PRACTICAL SOLUTIONS 115

solution should utilise both methods to minimise patch dgplent time. Patches can be pushed
as soon as they are available for deployment, and agentsheak-n to pull patches at regular
interval or during a client-side event such as a reboot oaimgjg a home network.

Thus, agent based technology gives you more options andenatsol. It also prevents creden-
tials from being transferred around the network and redtleesamount of bandwidth required.
Difficulty in installing agents can be avoided by includimgtagent in standard baseline images,
or using remote administration tools to deploy them. Howeagent only architectures cannot
protect new machine on the network, or in situations wheratfent fails and therefore, cannot
be sufficient for a patch management solution.

Thus, a combination of agentless and agent-based archi#gecre ideal for a patch management
solution.

5.2.3 Available Tools

Given the large number of tool claiming to be capable of mamathe many aspects of patch
management, an in-depth review of each one is outside tipesdahis research. In some earlier
work, an in-depth review of Microsoft's WSUS patch managetpeoduct was conducted. This
is included as appendix B. This section provides a brief migson of the evolution of various
forms of patch management tools, and a classification of dfbibof popular tools based on the
functionality and capabilities described above.

5.2.3.1 Evolution

Generally patch management software fits into one of fivegoates. These categories appear to
have arisen as software that provided an aspect of the patnagement process bolted on the
ability to deploy patches, with software actually develdp@ manage the entire patch manage-
ment process (4) the only noticeable exception.

1. Vulnerability Scanner

2. Configuration Managers

CHAPTER 5. PRACTICAL SOLUTIONS 116

3. Package Manager
4. Original Patch Managers

5. Defence in Depth tool

The last category is usually consists of additional defeicat can be used, and does not include
tools directly related to patch management. These tooldbwitliscussed in section 5.3.

Vulnerability Scanners These tools started off as vulnerability scanners andsedlihe need
to provide the option of remediating discovered vulnerabd. Thus, a method for pushing
patches to machines was added. These tools are usuallylemgestlutions that started off
as remote network vulnerability scanners. An example & tfppe of component is Shavlik’'s
HFChkNet which started off as the engine used for vulneitglitans in Microsoft’'s Baseline
Security Analyser (MBSA) scanner [201]. However, Shavldshsince split its products into
many separate products each implementing some specifitdoatity, thus a more appropriate
example may be GFI Languard [202].

Configuration Managers These tools attempt to centralise the administration aisglects of
machines on a network or in a domain. Examples of these iedWidrosoft’s Systems Man-
agement Server (SMS) [203], IBM’s Tivoli [204] or Configuods[205]. These are usually
expensive agent-based solutions that already performey ofathe tasks necessary for patch
management, such as asset and change management, thahbawxpended to include patch
management. The advantage they provide is that one agefiecased for a variety of tasks
instead of managing several agents.

Package Managers Package management has traditionally been driven by theap@rat-
ing systems which have needed to develop systems to manad@rgle number of third party
software they require. Each operating system has its owkagacmanagement system. Mi-
crosoft's SUS and later incantation, WSUS [206] is essbyntéapackage manager with some
extra functionality. Package managers have traditionatlly focused on the patch inventory,
packaging and distribution, but become patch managers thlegrbranch out to include some of
the other functionality described in section 5.2.1. Exaspf this include Debian’s APT [70],
and RedHat's RPM [173] systems.

CHAPTER 5. PRACTICAL SOLUTIONS 117

Original Patch Managers This class of software describes tools that have been fgakvel-
oped with the original intention of fulfilling the needs oftpl management. It is not surprising
that this is the largest category of patch management t&ame examples include UpdateEx-
pert, Patchlink Update [207], BigFix [208] and Ecora Patcandger [209].

5.2.3.2 Examples

Some examples of each type of product are given below.

Vulnerability Scanner

— GFI Languard [202]

Configuration Managers

— IBM Tivoli [204]

Package Manager

— Debian APT [70]
— FreeBSD Ports [210]
— Microsoft WSUS [206]

Original Patch Managers

— BigFix [208]
— Patchlink Update [207]

A table indicating which of the broad functionality areastegroduct fulfils is provided in
table 5.3. The quality and depth of the implementation isreptesented. The feature set of
each category is made somewhat more clear, but in generagl ofaihe patch management
tools automate similar functionality. All of the tools ingphented patch notification, but Tivoli
was the only one to correlate information from threat semsdiivoli provided almost all the
functionality of the other products, nicely demonstrating scope of configuration management
tools. All of the tools apart from the package managers pi®vilnerability scanning, however

CHAPTER 5. PRACTICAL SOLUTIONS 118

BigFix and Patchlink do this with third-party tools such asg§us that they integrate with their
product, while Tivoli and GFI appear to provide their own rsgars. Vulnerability scanners
are available for WSUS, Apt and Ports based system, but tleepa integrated into the tool.
Similarly reporting tools and host databases are avaifabkpt and Ports, but are not integrated.
BigFix, Patchlink, APT and Ports provide their own patchéisraesting patches released by
other vendors, while WSUS is a vendor specific tool. GFI analTuse the vendor patches as
they are released. BigFix’s and Patchlink’s patches ardad@ through a pay-for-subscription
service. It is interesting to note, that none of the tools/t® support for automating testing.
Some allow for a 'test’ group to be created and patches dedltythem, however this does not
provide any functionality actually help with the testing.

We can see that there are still opportunities to developuhetionality of patch management
tools.

Notification | Inventory Vulnerability Testing | Packaging | Distribution Reporting
Management Scanner
Possible Values| (P, V, T) (H, P, V) (Y|IN|TP) (Y|N) (Y |N) (Y|N) (Y|N)
Tivoli P, T H, P,V Y N N Y Y
BigFix P H, P TP N Y Y Y
Patchlink P H, P TP N Y Y Y
GFI P,V H, P,V Y N N Y Y
WSUS P H, P N N Y Y Y
Apt P P N N Y Y N
Ports P P N N Y Y N
Key
® H-Host
® Y-Yes
® P - Patch
® N-No
® T-Threat

® V- Vulnerability

® TP - Third Party

Table 5.3: Comparison of Patch Management Tool Functitynali

(a,b)-aandb

(a|b)-aorb

CHAPTER 5. PRACTICAL SOLUTIONS 119

5.3 Defence in Depth

Defence in depth is a security strategy pioneered by th¢éamjilivhere multiple layers of security
are used to minimise the amount of damage caused by an onr{80]. In a broader context
it refers to every aspect of information security where a lom@tion of people and technology
are used to form the multiple layers. In the context of paight will be used to refer to ad-
ditional techniques that can be used to mitigate the thfeatd by machines with unpatched
vulnerabilities. While testing occurs the organisatiolefs vulnerable and is often in a situation
where it cannot turn off a critical service. Here additiotealhnologies designed to reduce the
effectiveness of an attack or at least to allow for the attacke discovered can be utilised to
minimise the consequences of a successful exploit.

5.3.1 Firewalls and Anti-Virus

Firewalls and anti-virus solutions are a well understoddtsan to some attacks. However alone
they are often fairly inadequate. In section 1.3 the fagiogfirewalls were described. The rise
in use of web-based applications and the multiplexing oessvservices over the HTTP port
means that a firewall is only useful in certain select ciraamses. A firewall should be deployed
however, and ports for commonly attacked services such agdd¥is RPC or OpenSSH should
be firewalled off if possible. Additionally, services onlgquired by a select group of people,
for example firewall management interfaces, should lingtrttachines allowed to connect to the
port. If a port can be completely firewalled off, then quassias to whether the service is needed
at all should be raised.

Anti-virus solutions can help to mitigate attacks. Giveaitimear ubiquitous deployment on all
end-user machines, they can help to combat the rise in masigoftware that relies on con-
fidence tricks and minimal user interaction to spread. Kmggignatures up-to-date can help
to prevent against known malicious software attacks. Heweanti-virus solutions that reply
solely on signature based detection are becoming lesdieffeStatistics provided by the mal-
ware submission service, VirusTotal consistently showificantly more failures in detection
that successes [211]. For example statistic for seven daecember 2005 showed 261 suc-
cessful detections compared to 14 285 failures. Often nralwariants can be rapidly created
and discreetly spread, making it difficult for malware asédyto discover and analyse each piece
of malicious software rapidly. Additional techniques sashheuristics and policy controls can

CHAPTER 5. PRACTICAL SOLUTIONS 120

help to catch new forms of malicious behaviour [212], by d&tg many of the results used by
malicious software, instead of the specific technique. Kangle detecting if a browser tries to
execute code stored in a data segment assigned to a pictlcepiok up on any new malware
that attempts to use this technique. Thus, when a patchng bested, signatures for potential
attacks can be distributed to client machines to providetsaon protection against the threat.

In some cases the anti-virus solution can be effectivelyplamliwith a proxy to provide some
protection from the crunchy firewall problem [40] in the fowhcontent filters, an example of
such atool is WebMarshal [213]. With the rise of processiogégr it is likely possible that many
more application specific proxies for services multiplexeer HTTP will become available.
Both the use of firewalls and anti-virus software is strongigommended. While they will not
provide absolute protection, they can sometimes complbtetk a threat and or minimise it.

5.3.2 Intrusion Detection/Prevention Systems

There are both host and network IDS solutions. The focus isesa network Intrusion Detec-
tion Systems (IDS) to mitigate attacks conducted over thermet. Intrusion detection systems
(IDS) operate in a similar manner to anti-virus solutionsublly a set of signatures are used to
detect signs of malicious activity or heuristic and poliontrols are used to detect new attacks.
Currently signatures are the most commonly used methodtettien given the difficulty in
determining 'regular’ use of diverse network protocolse3é signatures will be used to look for
patterns in network traffic and alert when they are discaermwever, IDSs have a notoriously
high rate of false positives [214] and can require extensiaeng to provide an accurate report-
ing rate. IDS signatures are easy to create, usually onlgisting of a few lines of information,
and are often available very soon after the detection of &rmak application. The simplicity
of the signatures means that they can be rapidly tuned tor lthveefalse positive rate. Similar
to anti-virus solutions, when a patch is being tested theadige can be used to monitor for any
attacks.

An IDS can be turned into an Intrusion Prevention System)(l38ntegrating it with a firewall
to block traffic detected as malicious. This could be extdnibedrop all traffic from hosts
detected to have sent malicious traffic. This should be uaatiausly as malicious traffic could
be sent from a spoofed address potentially causing trafiro fa legitimate host to be dropped,
effectively causing a Denial of Service attack [46]. Howeva the short term with careful

CHAPTER 5. PRACTICAL SOLUTIONS 121

monitoring this can provide an effective tool to minimise tthance of a threat successfully
exploiting an unpatched vulnerability.

An extension of IDS systems are block lists [215]. These &ts bf addresses known to be
involved in malicious activity. They can be used to limit thember of attacks from know bad
sources. However, block lists are easily circumvented byingpan attack to a new host. Given
the large number of zombie machines theorised to be compeahily attackers, this is often
fairly trivial. However, in the case of web-based threatsemhspecific sites are distributing
malicious content, they can be of use.

5.3.2.1 Virtual Patching

Some vendors are marketing a defence in depth tool providirigal patching’. Most notably
BlueLane Technology’s PatchPoint solution [216]. The basirking of the technology appears
to be that of an IPS with the additional feature of being abledrrect’ traffic. This amounts to
stripping out the known bad part of malicious network atyiand forwarding it down the wire.
While the marketing hype promises this as a final solutiorh®woes of stop-gap defences
during patch testing, we believe these claims to be falsereCong traffic is a two step process.
First malicious traffic must be detected, then it must beested. This is the exact process used
by an IPS, where first malicious traffic is detected and therémtion’ is a total block of the
request. Thus, the only difference between 'virtual patghand an IPS is the additional step
of trying to correct the traffic. This is arguably a bad approaThe fallibility of signatures
has already been mentioned. A signature only provides til@efor known bad activity. Even
in the case of known-bad activity this can be a difficult taglar example during the recent
WMF vulnerability, malicious WMF files were made difficult tetect through the use of gzip
compression and header padding tricks [217]. Thus, a makcrequest may have more to it
than a signature can detect, and a good strategy is to bleaktire request if part of it has been
discovered as malicious. Trying to correct the request angdrding it is similar to going to
the effort of detecting know criminals, then removing thegible weapons and letting them into
your jewelry store. Ptacek [218] provides a nice quotationhe matter:

If your in-line network security device claims to providertual patching", the
box must use the actual binary patch from [the vendor] to do it

CHAPTER 5. PRACTICAL SOLUTIONS 122

5.3.3 Other Hardening

There are a plethora of other defence in depth steps thatectkén to harden the configuration
of a machine and its services. Some examples include host bBS, cryptographically signed
executables, router white lists to limit worm infectiondasonfiguration hardening. This is a
broad area with he potential for much innovation that caregerbiged to extend the defence in
depth concept to buy an administrator more time to test patch

5.3.4 Software Selection

Given that patch management will become a significant andlaeg@ctivity if properly imple-
mented, minimising the number of patches required by deglasoftware will be of both a
security and cost benefit. By making good choices when softvefirst being deployed, high
maintenance and patch costs can be avoided later when thaf coigirating away from the soft-
ware is too high. Some software is patched more than otherfrtunately, it is not as simple
as figuring out which software has less patches, as this isdication of actual security. Older,
more mature software, will often have a larger user base atwraspondingly large support
community which often results in more people finding vultdiges, and due to its popularity,
more people looking for vulnerabilities. This may resultmore patches being released, making
it appear poorly coded, but be objectively more secure thewasoftware project that fulfils the
same functionality but, which has not had the same level @ir#ty review.

An organisation then has two choices, the first is which safwpackage should be used in the
face of multiple products. The organisation should condusecurity review of each product,
this review should be more in depth than counting the numbgratches and vulnerabilities
announced for each product. If possible the types of vubikias, frequency of serious vul-
nerabilities and patch response time should be includecte@mns decision is made there is a
choice between which version of the software should be ukexchoice is less frequently made
as most organisations deploy the latest version, howeigistimot always the best choice. It is
hypothesised that older software that fulfils all necesbasness and technical requirements and
is still actively maintainetiwill have less announced vulnerabilitiaad will, in fact, be more

2Actively maintained within acceptable limits. For exampécrosoft Windows 98 was until June 2006 still
being maintained, but not officially and patches were re&datowly, placing it outside the definition of 'activiey
maintained’.

CHAPTER 5. PRACTICAL SOLUTIONS 123

secure. To test this, vulnerability data for the Linux kénvas collected from the Common
Vulnerabilities and Exposures List [5] and analysed. Tiseilts seen in table 5.4 and figure 5.2
demonstrate that older kernel versions have less vuligiebover time, and hence less patches
to fix those vulnerabilities, than their newer counterpartss is due to three primary reasons:

e There is less functionality and code with potential seguriles.
e Older software has been subject to more and longer secavitgw

e There is less interest in discovering vulnerabilities idavlsoftware

Year
Kernel Version | 1999 | 2000| 2001 | 2002 | 2003 | 2004 | 2005
2.2 3 4 17 2 1 0 3
2.4 n/a 1 6 5 12 30 11
2.6 nfa | nfla | nla | nla 2 33 35
Total 4 6 19 7 15 50 40

Table 5.4: Table depicting vulnerabilities in the differ&mux kernel versions over time
Source: CVE [5]

Note: The total columns do not add up correctly as some vabilties affect multiple kernel versions or non-
standard kernel patches. For example in 2004 there were |b@rabilities which overlapped and in 2000 one
vulnerability was in the trustees kernel patch and in 199arinerability was in the 2.0 kernel version which isn'’t

included. These are included in the total to provide an idéhepgeneral reporting trends in the linux kernel.

Thus, if and older software version is still being securitgimained (within acceptable limits)
and provides all required functionality, it is often betteruse the older version over the newer
version as this will reduce the number of patches requirédout adversely affecting security.
This analysis is specific to a well known project with a largemnand developer base, such as
the popular operating systems and server software (e.qux.Windows, Apache). However,
this behaviour is not intrinsic and summaries of vulneigbilumbers is not a replacement for a
through analyses.

CHAPTER 5. PRACTICAL SOLUTIONS 124

Linux Kernel Vulnerabilities per Year
50
45
40
35

Kernel
Version

2.2
* 24
v 26
A Total

30
25
20
15

Number of Vulnerabilities

10

o

0 - —,——
1999 2000 2001 2002 2003 2004 2005

Year

Figure 5.2: Graph of the number of vulnerabilities in diffet Linux kernel versions per
yeatr.
Source: CVE [5]

5.4 Conclusion

This chapter has focused on the technical aspects of patcagament. First a description of the
functional areas where a patch management policy can b&oefiautomation were identified.
A brief discussion on each of these aspects was providedpgiout where specific technologies
could be used to improve on current patching tools. Aftes ghbrief analysis of some existing
patch management tools was conducted. With the functigraadd capabilities model developed
in the beginning of the chapter, we were able to asses eyigtiiich management tools and
found that while some provided invaluable automation, aetarof tools is still required with
no solution providing the ’silver bullet’. This chapter ther concluded that only a subset of a
patch management policy can be automated, but that thisnatitin is necessary to the task.
In addition, there is still room for much technical improvemt in automated patching tools,
particularly in providing tools to make testing patcheseag\fter this some additional technical
discussion focusing on other activities and technolodiasdan be used to improve the patching
process. Some defence in depth techniques were discusstecbtiid allow an administrator
to deploy stop-gap defences while a patch was being testbéseldefences are not always

CHAPTER 5. PRACTICAL SOLUTIONS 125

completely effective, but can help minimise some threats.

This chapter provided a description of actual tools thatlmansed in assisting with patch man-
agement thus bringing us to the end of the analysis of thisigheln the next chapter brief
summaries and conclusions are provided for each previcsteh

Chapter 6

Conclusion

6.1 Introduction

In the introduction to this thesis the objectives of thiseesh were put forward. This researcher
believes that these objectives have been mostly fulfilléuls Thapter provides a summary of the
work that has been presented, with a focus on how the dedalijectives were achieved. Hind-
sight allows for a clearer perception of the activities utaleen during the period of research and
some of the problems encountered are discussed. Finatllgefuwvork that has been identified
as useful is discussed.

6.2 Objectives

Several objectives were discussed in chapter 1. It was hihya@dome sense could be brought
to the patch management debate. This sense is sorely neepgediye growth of security as
an industry and patch management in particular, where verftive a commercial interest in
hyping threats and products. To this end, seven objectiees proposed, they are repeated here:

1. An analysis of vulnerabilities, exploits and patches Bcussing the vulnerability life-
cycle.

126

CHAPTER 6. CONCLUSION 127

N

. An analysis of vulnerability, exploit and attack trends.

3. An analysis of patches and their problems.

4. A discussion on how to implement a patch management policy

5. Adiscussion on how vendors can implement a scheduleti paliease policy.
6. A discussion on patch management tools and automating qfethe policy.

7. Tools to help automate and integrate parts of the policy.

Barring the last, it is believed that these objectives haenbachieved. The first objective was
dealt with in section 2.2 where the conclusions of severatcas based on their analysis of
empirical evidence were synthesised to produce the mospledenunderstanding of the current
vulnerability life-cycle that this researcher is aware ®he second objective utilised this new
understanding to discuss the trends that are currentlyfgindithis life-cycle. In section 2.3,
several trends were demonstrated indicating that the redk$ed to vulnerabilities in software.
The number of vulnerabilities are increasing, the numbattaicks are increasing and the amount
of time available to an administrator to remediate thesaemalbilities is decreasing. This analy-
sis fulfilled the second objective and provided a justifmats to whypatchesare necessary and
need to be expediently deployed.

The third objective was to analyse why patches appearedddfhoeilt to manage and install. In
section 2.4 several specific problems that face adminsgathen deploying patches were dis-
cussed. Two examples were then provided in section 2.4.6endeveral of these problems were
demonstrated. This objective provided a justification ashig patch managemeis necessary.

The fourth objective was to use the understanding gleared the information gathered in
meeting the previous objectives and derive a solution. i@ally this objective consisted of a
stronger form of objective seven, and it was naively beliebat a software tool could effectively
manage the problems relating to patch management. Howewes modified to its current state
in chapter 3, where an in-depth discussion is provided on &owrganisation can develop a
patch management policy. In a drastic shift from the oribiigective, this discussion remained
technology agnostic and focused on the procedures thad betémployed. In section 3.2.3.2 an
introduction to risk assessment was provided. This wasddarbe the single most useful part
of the derived policy. It was discovered that the largesbfmm facing patch management was a

CHAPTER 6. CONCLUSION 128

lack of information with which to asses risks. The risk asgssnt discussed influenced the rest
of the research greatly.

The fifth objective came about due to the shift of some ventboasscheduled patch release cycle
and the threat of this cycle becoming an industry standandrddoft in particular drove much
of the inquiry into patch schedules. With the context of théerability life-cycle described in
the earlier chapters, it was clear that an end-user polityydwalt with part of the group relevant
to patch management, and that vendors could make a signifiitBrence to any efforts. Thus,
in chapter 4 an argumentative analysis of scheduled patehse policies was given. It was
concluded that a patch schedule only works in a situationetdyed disclosure. In the case
of instantaneous disclosure described in section 4.3v@ddor’s should release beta-patches
and benefit from community collaboration and testing whidhresult in effective vulnerability
remediation being available sooner.

The sixth objective went through several iterations beforgas met in its final state. Some
confusion as to how to relate the functionality of an idedtpananagement tool to the policy
proposed earlier existed. This confusions was overcomeaatidcussion on how parts of the
patch management policy could be automated was providezttios 5.2.1. This was then used
to classify a subset of current patch management tools tioses.2.3 demonstrating that patch
management tools don’t support every necessary step irch petnagement policy. In the next
section (5.3) the net was cast a bit further and a discussiaiefence in depth tools that could be
used to defend the organisation while patches were beitgpt@gas provided. This completed
the solution objectives to the problems discovered in dbjes one to three.

The need for integration of several management areas amanafion sources in a patch manage-
ment policy is critical. It was hoped that tools could be deped to help provide the automation

described in the previous objective. However, a lack of tamé scope prevented this from being
achieved. This will be further discussed in the 'future wedction below.

6.2.1 Summary

Thus, it is believed that the objectives were met. The prolded its nuances were discerned
and solutions that responded to and mitigated these prebiere developed.

CHAPTER 6. CONCLUSION 129

6.3 Problems and Solutions

The specific problem this research tried to address was tavinkiable solutions to the problems
presented by patch management. Specifically, the problesnthred of vulnerability manage-
ment: in the face of increasing threats and vulnerabillii@s can patches be used to effectively
remediate these vulnerabilities to render the threats mbwoe related problem was that of the
patch paradox, where without a patch an asset is vulneralaléatck, and with a patch the asset
is vulnerable to failure.

The developed solution presented in chapter 3 was to praauedistically implementable pol-
icy guide with which organisations could develop their ovamprehensive patch management
policies. This policy took into account the many variablessent in both vulnerability/attack
scenarios and present in the average organisation. Ofteadaministrator has to deploy patches
to many machines with diverse requirements that can havelesneffects on business pro-
cesses. The policy focused on risk management in sectioB.3.28s a method for directing
decision making. The second part of the solution presemtezhapter 4 was less direct, but
involved a discussion of how vendors could implement a salegldpatch release policy that re-
sponded to the threat trends discovered, better integvatecdorganisation patch management
policies and most importantly reduced the likelihood oflekption to the end-user.

6.4 Future Work

There were many aspects of this work that could be branchemhtofa thesis of their own.
For example, several anti-virus companies make their mbgdgcusing solely on virus-threat
notification and mitigation which were but small sub-comgais of this discussion. Some of
the work related to this subject which could be undertakeherfuture are discussed below.

6.4.1 Threat Management

Chapter 2 found it very difficult to gain an accurate pictufewarrent threats, or provide com-
prehensive threat management resources. It is very difficudiscern current threat activity.
Most threats mentioned are those that are attacking on dasgyy scale, where the scale of the

CHAPTER 6. CONCLUSION 130

attack is directly related to its amount of coverage. Howewasmall scale targeted attack could
potentially do more damage to an organisation. Tool to pl@\ietter real-time threat report-
ing and correlation from public threat monitors such as dwaats, internet telescopes, honeypots
and vendor sensor networks are very important in gainingcaarate picture of current threats.
Extending these to include data from local sensors such &sahal Firewall logs to provide an
organisation-scale view of threats would also help to gea@urate picture of attack activity.
An example current project is Symantec’s DeepSight analj€®], which provides both an
internet wide and organisation wide view of threat activity

6.4.2 Wulnerability Detail and Trend Tracking

Current vulnerability information is targeted at provigimformation on an individual vulner-
ability. Trend data can provide some valuable insight. F@meple, information on the dates
vulnerabilities were first reported to vendors could prevath understanding of how fast vendors
are at providing patches, and provide more empirical exiddéor some of the claims in chapter
4. It would also allow vendors to be compared, and possiblyivated to patch faster. More
advanced information such as code-level granularity aligwlescription of the vulnerable func-
tion or the type of vulnerability, instead of just the vulable version of the software product can
be used to look for consistent security errors providinggintsfor developers looking to secure
their products.

6.4.3 Optimal Time to Patch for Large Vendors

In section 3.2.3.3 the optimal time to patch for a group ofnewdbilities that involved many
vendors was worked out. Beattét al. [2] called for further research into the optimal time
to patch for individual vendors. This would give organieas a better idea of how they could
minimise the risks from patches. This would integrate wilhithe vulnerability detail research
described above, as calculating the optimal time to patghires information on when and how
often a patch was recalled. This research could help in matbkduling decisions, choosing
between different vendor’s products and motivating veadoimprove their patches.

CHAPTER 6. CONCLUSION 131

6.4.4 Patch Standards

Currently patches are implemented in several forms, ussakcific to an operating system or
deployment platform. One of the problems highlighted tigtwaut this work was the existence
of multiple patch deployment mechanisms. This is less ofodlpm on open source platforms
as most package management tools were developed to inchwakeaange of software, how-
ever on Microsoft’s platforms it is problematic. Currenthere exists XML schemas to describe
vulnerabilities, most notably VuXML [188] and OVAL [191]. rBviding a similar CVE [51]
compatible standard description for patches would allowafo standard patch deployment ap-
plications to be built and used. This would need to decoupligll a standard patch packaging
format. Given that many of the tasks of a package manager elteunderstood, dependency
tracking, reverse dependencies, roll-back etc. a cra$opin deployment mechanism could be
developed. This could decouple patch deployment from §pgmatch deployment tools. This
would ease patch testing for multiple platforms and distidn and reduce the redundant testing
performed by many groups, particularly in the open-sourcddyv A patch could be developed
by Red-Hat and rolled out on a Debian machine with minimal ification.

6.5 Final Word

Patching is a problem that will be with us for a while. Howe\he current discussions around
patching generally revolve around the simple tasks of patahagement. It is hoped that this
thesis has managed to broaden this discussion, but not esssdy so. Some of these issues
raised are problems that run right through the informatiecusity field, such as threat report-
ing and change management. The largest conclusion whicheanawn from this research is
that there is no simple solution to the problems of patch mpameent, to realistically implement
a comprehensive and effective patch management policydsalle some larger organisations
several years. However, some dependencies of such an implation have not been effectively
fulfilled either, for example our knowledge of threats idl skery poor. Additionally, the profit
motive of many security vendors still has them bowing to tleng pressures and it is unlikely
that they would change overnight, especially with somé ediling themselves 'Unbreakable’.
Solutions to the problems of patch management will take tiefere they can be easily imple-
mented.

CHAPTER 6. CONCLUSION 132

However, this is the work of a small group, and much more disimn, argument and debate
is required to find workable solutions to the problems thaefaach unique instantiation of a
patch administrator. The bar of information security detraust be raised above the noise of
vendor marketing and threat hype so that meaningful dismussn be had at every level of

security management. It is our hope that this thesis hasetutltge bar a little higher, however

it is the continued efforts of the many dedicated securitfgssionals tirelessly analysing and
responding to events that has been most notably impresEiaepower of a community cannot

be denied and there are many ways in which you as the comnuamtgontribute. Open-source

security projects and communities such as Snort [215]omBYA4[219], open database projects
such as OVAL [191] or OSVDB [183] or volunteer organisatiaugh as the ISC [55] all make

a difference and require your help.

References

[1] Schneier, BruceFull Disclosure and the Window of Exposut€rypto-Gram Newsletter
(September 15, 2000).

Available at:ht t p: / / www. schnei er. com crypt o- gram 0009. ht m \ #1

[2] Beattie, Steve; Arnold, Seth; Cowan, Crispin; WaglerriZzeNright, Chris and Shostack,
Adam. Timing the Application of Security Patches for Optimal Wmi In LISA '02:
Proceedings of the 16th USENIX conference on System adratius, pages 233-242.
USENIX Association, Berkeley, CA, USA (2002).

Available at: htt p: // ww. useni x. or g/ publ i cati ons/|ibrary/ proceedi ngs/|isa02/tech/full_papers/

beattie/beattie_htm/

[3] Whitaker, Steve; Fish, Barry and Sands, C&uwlaris Patch Management: Recommended
Strategy Technical reportSun Microsystems (February 2005).

Available at:ht t p: / / www. sun. conl bl uepri nt s/ 0205/ 819- 1002. pdf

[4] Rescorla, Eric.ls Finding Security Holes a Good Ideath IEEE Security and Privagy
volume 3, no. 1: pages 14-19 (2005). ISSN 1540-7993. dpi/htk.doi.org/10.1109/
MSP.2005.17.

[5] CERT/CC Common Vulnerabilities and Exposuf&bsite (jun 2005).

Available at:ht t p: // cve. mi tre. org/ cgi - bi n/ cvekey. cgi ?keywor d=I i nux+ker nel

[6] Office of Information and Communications Technolodgformation Security Guideline
for NSW Government Part 1 Information Security Risk ManaggmTechnical report
New South Wales Department of Commerce (June 2003).

Available at:ht t p: / / www. 0i t . nsw. gov. au/ pdf/ 4. 4. 16. | S1. pdf

[7] Eschelbeck, Gerhardlhe Laws of Vulnerabilitiesin Black Hat Briefinggedited by Jeff
Moss). Black Hat, Inc, 2606 Second Avenue, 406, Seattle, B#23 USA (July 2003).

133

REFERENCES 134

[8] Eschelbeck, Gerhard.he Laws of Vulnerabilities 200®ualys Research & Development
(2005).

Available at:ht t p: / / www. qual ys. coni resear ch/ r nd/ vul nl aws/

[9] Eschelbeck, GerhardThe Laws of Vulnerabilities In Black Hat Briefingg(edited by
Jeff Moss). Black Hat, Inc, 2606 Second Avenue, 406, Seatthe 98121 USA (March
2004).

Available at: http://ww. bl ackhat . com present ati ons/ bh- asi a- 04/ bh- j p- 04- pdf s/

bh- j p- 04- eschel beck. pdf

[10] Dumbill, Edd. The Next 50 Years of Computer Security: An Interview witmAJax
O’Reilly Network, Interview (September 12, 2005).

Available at:ht t p: / / ww. or ei | | ynet. com pub/ a/ net wor k/ 2005/ 09/ 12/ al an- cox. ht m

[11] Weaver, Nicholas C.Warhol Worms: The Potential for Very Fast Internet Plaguds
(2001).

Available at:ht t p: / / www. i war . or g. uk/ consec/ r esour ces/ wor s/ war hol - wor m ht m

[12] Poulsen, KevinNachi worm infected Diebold ATMSecurity Focus - Columnist (Novem-
ber 24, 2003).

Available at:ht t p: / / www. securi tyf ocus. com news/ 7517

[13] Harding, Luke.Court hears how teenage introvert created devastating caenpvirus in
his bedroom The Guardian Newspaper (July 6, 2005).

Available at:ht t p: / / www. guar di an. co. uk/ germany/ articl e/ 0, 2763, 1522192, 00. ht m

[14] Thomas, DanielAre our critical systems safe from cyber attackihet.com News (April
21, 2005).

Available at:ht t p: / / www. vnunet . conf conputi ng/ anal ysi s/ 2142496/ criti cal - syst ens- saf e- cyber

[15] Glave, JamesCrackers: We Stole Nuke Dat&Vired News (June 6, 1998).

Available at:ht t p: / / www. wi r ed. conl news/ t echnol ogy/ 0, 1282, 12717, 00. ht m

[16] Sophos Security Threat Management Report 20@shnical report SOPHOS Inc. (De-
cember 6, 2005).

Available at:ht t p: / / www. sophos. cont vi rusi nf o/ whi t epaper s/ SophosSecur it y2005- mmuk. pdf

[17] Danchev, Danchavialware - future trendsin (January 9, 2006).

Available at:ht t p: / / www. packet st ormsecuri ty. or g/ paper s/ gener al / mal war e- t r ends. pdf

REFERENCES 135

[18] holy_father@phreaker.neHacker Defender Antidetection Servideroduct Description
(December 2005).

Available at:ht t p: / / hxdef . czweb. or g/ about . php

[19] Eckelberry, Alex.Massive identity theft ringSunbelt Software Blog (August 4, 2005).

Available at:ht t p: / / sunbel t bl og. bl ogspot . conf 2005/ 08/ massi ve-i dentity-theft-ring. htm

[20] Salusky, William.Mitgleider Hell. SANS Internet Storm Center Handler’s Diary (October
3, 2005).

Available at:http: //isc. sans. org/ di ary. php?st oryi d=722

[21] 'Mafiaboy’ hacker jailed BBC News (September 13, 2001).

Available at:ht t p: / / news. bbc. co. uk/ 1/ hi / sci/tech/ 1541252. st m

[22] Current Malware Threats and Mitigation Strategie$echnical report US-CERT (May
16, 2005).
Available at: http://ww. cscic. state. ny. us/ nmsi sac/ webcasts/05_05/info/mal_%0thrt_mt\

_strat. pdf

[23] 386BSD + LINIX + GNU + X11R5 on CDROM - let us know what you wadSENET
(December 1, 1992).
Available at: http://groups. googl e. conl group/ conp. uni x. bsd/ br owse\ _t hread/ t hr ead/

134942a64ef 36f 5e/ 8d03067120d4f 2bf

[24] When will HP supply PATCHES before they are RequireSENET (November 17,
1992).
Available at: http://groups. googl e. con group/ conp. sys. hp/ browse\ _t hread/ t hr ead/

e065debcf 70b5ec0/ 5cd814ab642863ce

[25] Top 10 Admin problems on SUNESENET (February 27, 1992).

Available at: http://groups. googl e. com group/ conp. sys. sun. adm n/ br owse\ _t hread/ t hr ead/

921af 6e2129df 23c/ 5f 95293a20a34f 19

[26] Wall, Larry. Patch version 1.3USENET (May 24, 1985).

Available at: http://groups. googl e. cont group/ nod. sour ces/ browse\ _t hread/ t hr ead/

c5240ceb77b7f 586/ 488b0929254d936a

[27] Bashar, Mohd A.; Krishnan, Ganesh; Kuhn, Markus G.; figpd, E. H. and Jr, S.
S. Wagstaff.Low Threat Security Patches and Taols IEEE Computer Societ{d997).

REFERENCES 136

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

CSD-TR-96-075; COAST TR 97-10.

Available at: https://ww. cerias. purdue. edu/t ool s_and_r esour ces/ bi bt ex_ar chi ve/ ar chi ve/ 97- 10.

pdf

Eichin, Marchk W. and Rochlis, Jon AAn Analysis of the Internet Virus of Novemberem-
ber 1988 In IEEE Symposium on Research in Security and Priaeg9).

Available at:ht t p: // web. mi t. edu/ ei chi n/ w/ vi rus/ mai n. ht m

Bejtlich, Richard.Miscategorizes Threat8log Entry (July 8, 2005).

Available at: http://taosecurity. bl ogspot. com 2005/ 07/ cool - site-unfortunatel y- m scat egori zes.

ht m

US Army Information Assurance DivisiorArmy Regulation 25-2Glossary (November
14, 2003).

Available at:ht tp: //ia.gordon. army. m | /iaso/ Arnmy/ AR25- 2/ mai n. ht Ml #t erm

Office of Cyber Security & Critical Infrastructure Cabnation. National Webcast Initia-
tive, Cyber Security Risk Assessment Webcast, Glossaeyra6TGlossary (August 26,
2004).

Available at: http://ww. csci c. state. ny.us/ nsi sac/ webcasts/ 8\ _04/i nf o/ 804\ _webcast\ _gl ossary.

ht m

Stoneburner, Gary; Goguen, Alice and Feringa, AleRisk Management Guide for In-
formation Technology SystemBechnical reportNational Institute of Standards (NIST),
Computer Security Division, Information Technology Laaiary, National Institute of

Standards and Technology, Gaithersburg, MD 20899-8930 2D02). Special Publica-

tion 800-30.

Available at:ht t p: // csrc. ni st. gov/ publ i cati ons/ ni st pubs/ 800- 30/ sp800- 30. pdf

The Security Risk Management Guidechnical reportMicrosoft (October 15, 2004).
Available at: http://wwmv. mi crosoft.com technet/security/topics/policiesandprocedures/secrisk/

def aul t. mspx

Bejtlich, Richard. Personal Communication (Deceniker2005).

Guideline for Management of IT Security-Part 1: Conceptd dodels for IT security
Technical reportISO/IEC (1996).

REFERENCES 137

[36] Definition: Patch The Jargon File.

Available at:ht t p: / / www. cat b. or g/ ~esr/j argon/ ht m / P/ pat ch. ht m

[37] Oracle9i Database Administrator’'s Guid®roduct Guide (April 23, 2002).

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Available at:ht t p: // ww. | c. | ei denuni v. nl / awcour se/ or acl e/ server. 920/ a96521/ dba. ht Ml #13284

Analysis of the Witty WornTechnical reportLURHQ (March 20, 2004).

Available at:ht t p: / / www. | urhg. comlwi tty. ht i

Berinato, ScottPatch and Pray In CSO Onlingd August 2003).

Available at:ht t p: / / ww. csoonl i ne. com r ead/ 080103/ pat ch. ht m

Cheswick, Bill. The Design of a Secure Internet GatewhayProceedings of the USENIX
Summer 1990 Conferengeages 233-237. Anaheim, CA (June 11-15, 1990).

Available at:ht t p: // resear ch. | unet a. coni ches/ paper s/ gat eway. ps

Mann, Charlesinterview with Bruce Schneiellhe Atlantic News, Interview (September
2002).

Available at:ht t p: / / www. t heat | anti c. conml doc/ prem 200209/ nmann

Dekker, Marcel. The Froehlich/Kent Encyclopedia of Telecommunicatioimdume 15.
New York (1997).

Available at:htt p: / / ww. cert. org/ encyc\ _article/tocencyc. ht M\ #Hi story

Arbaugh, William A.; Fithen, William L. and McHugh, Jah Windows of Vulnerability:
A Case Study Analysisin Computey volume 33, no. 12: pages 52-59 (2000). ISSN
0018-9162. doi:http://dx.doi.org/10.1109/2.889093.

Browne, Hilary K.; Arbaugh, William A.; McHugh, John drFithen, William L. A Trend
Analysis of Exploitationsin SP '01: Proceedings of the 2001 IEEE Symposium on Secu-
rity and Privacy page 214. IEEE Computer Society, Washington, DC, USA (2001

Available at:ht t p: / / www. securi tyfocus. confdata/library/ CS- TR- 4200. pdf

Dacey, Robert F. GAO-03-1138T: Effective Patch Management is Critical tdidéit-
ing Software VulnerabilitiesTechnical report United States General Accounting Office
(Septmember 10, 2003). Testimony Before the Subcommittdeohnology Information
Policy, Intergovernmental Relations, and the Census, el@mnmittee on Government
Reform.

Available at:ht t p: / / www. gao. gov/ cgi - bi n/ get r pt ?GAO- 03- 1138T

REFERENCES 138

[46] Mell, Peter; Bergeron, Tiffany and Henning, Davi@reating a Patch and Vulnerability
Management ProgramTechnical report National Institute of Standards (NIST), Com-
puter Security Division, Information Technology LabongtoNational Institute of Stan-
dards and Technology, Gaithersburg, MD 20899-8930 (Nowzr2b05). Special Publi-
cation 800-40 ver. 2.

Available at:ht t p: // csrc. ni st. gov/ publi cati ons/ ni st pubs/ 800- 40/ sp800- 40. pdf

[47] Panko, RayHuman Error WebsiteResearch Website (April 1, 2005).

Available at:ht t p: / / panko. cba. hawai i . edu/ HumanEr r/

[48] Bernstein, D. JThe gmail security guarante&Vebsite (May 29, 2005).

Available at:http: //cr.yp.to/ gnai | / guar ant ee. ht m

[49] Ellis, James; Fisher, David; Longstaff, Thomas; Pésaninda and Pethia, RichardRe-
port to the President’s Commission on Critical Infrastruiet Protection Technical reporit
CERT® Coordination Center, Software Engineering Institute,négre Mellon Univer-
sity, Pittsburgh, Pennsylvania (January 1997).

Available at:htt p: / / www. cert. org/ pres\ _comm cert.rpcci.body. htm

[50] CERT/CC Statistics 1988-2006ERT/CC Website (January 2005).

Available at:htt p: / / www. cert.org/stats/cert_stats. htm

[51] Statistics Query PageNational Vulnerability Database Website (December 2005)

Available at:ht t p: // nvd. ni st. gov/statistics.cfm

[52] All Secunia Security Advisories 2003-20@ecunia Website (December 2005).

Available at:ht t p: / / secuni a. com gr aph/ ?t ype=al | \ &gr aph=adv

[53] Houle, Kevin and Weaver, Georgd&rends in Denial of Service Attack Technologyn
(October 2001).

Available at:ht t p: / / ww. cert. or g/ ar chi ve/ pdf / DoS\ _tr ends. pdf

[54] Howard, John D An Analysis Of Security Incidents On The Internet, 1989 51%h.D.
thesis, Carnegie Mellon University, Pittsburgh, Penrayia 15213 USA (April 7, 1997).

Available at:ht t p: / / www. cert. or g/ resear ch/ JHThesi s/ Chapt er 12. ht ni

[55] DShield - Distributed Intrusion Detection System, Therimt&s Early Warning System
and Internet Security community siteroduct Website.

Available at:ht t p: / / www. dshi el d. or g/

REFERENCES 139

[56] Moore, David; Voelker, Geoffrey M. and Savage, Stefdnferring Internet Denial-of-
Service Activity In Proceedings of the 10th USENIX Security SymposWashington,
D.C., USA (August 2001).

Available at:ht t p: / / www. useni x. or g/ publ i cations/ i brary/proceedi ngs/ secO1l/ noore. ht m

[57] Yegneswaran, Vinod; Barford, Paul and Ullrich, Johesininternet intrusions: global
characteristics and prevalencéh SIGMETRICS ’'03: Proceedings of the 2003 ACM SIG-
METRICS international conference on Measurement and riraglef computer systems
pages 138-147. ACM Press, New York, NY, USA (2003). ISBN 1E8664-1. doi:
http://doi.acm.org/10.1145/781027.781045.

[58] Survival Time History SANS Website (December 2005).

Available at:htt p: / /i sc. sans. or g/ survi val hi story. php

[59] Overview of Attack Trendgechnical report CERT/CC (October, 11 2005).

Available at:ht t p: / / www. cert. or g/ archi ve/ pdf / att ack\ _t rends. pdf

[60] Kaminsky, DanScanrand Dissected: A New Breed of Network Scanresthnical report
LURHQ Threat Intelligence Group.

Available at:ht t p: / / www. | ur hg. conf scanr and. ht m

[61] Jontz, SandraNavy, Marines Block Commercial Email Sité4ilitary.com News (October
19, 2005).

Available at:ht t p: //www. mi | i tary. com NewsCont ent/ 0, 13319, 78905, 00. ht m

[62] Turner, Dean; Entwisle, Stephen; Friedrichs, OlivAahmad, David; Hanson, Daniel,
Fossi, Marc; Gordon, Sarah; Szor, Peter; Chien, Eric; CgsyiDavid; Morss, Dylan and
Bradley, Brad.Symantec Internet Security Threat Report: Trends for JaNp@cember
04. Technical reportSymantec (March 2005). Volume VII.

Available at:htt p: // ses. symant ec. com pdf/ Thr eat Report VI | . pdf

[63] Eschelbeck, Gerhardsecurity Vulnerabilities, Exploits and PatcheSreativematch On-
line Magazine (May 3, 2005).

Available at:ht t p: / / www. cr eat i vemat ch. co. uk/ vi ewnews/ 290970

[64] Sancho, DavidThe Future of Bot Worms: What we can expect from worm autimaisei
coming monthsTechnical reportTrend Micro (2005).
Available at: http://ww.trendm cro. com NR/ rdonl yres/ B612D246- 283C- 444C- 8A92- BOAC6782A2D1/

17115/ Fut ur e\ _of \ _Bot s\ _FI NAL. pdf

REFERENCES 140

[65] Miller, Charles. Expanding Exposure: The Decreasing Time Between Web Afpiphc
Vulnerability and ExploitationOWASP Papers Program (November 11, 2005).

Available at:ht t p: / / www. owasp. or g/ docr oot / owasp/ m sc/ webapp- oswap. doc

[66] Long, JohnnyGoggledork Database

Available at:ht t p: //j ohnny. i hackst uf f. comf

[67] Flake, HalvarSABRE BinDiff Product Website (June 26, 2005).

Available at:ht t p: / / www. sabr e- security. conl products/bindiff.htmn

[68] Rescorla, EricSecurity holes... Who caresfa Proceedings of the 12th USENIX Security
Symposiunpages 75-90 (August 2003).

Available at:ht t p: / / www. rt f m conf upgr ade. pdf

[69] Software Installation and Maintenancklicrosoft TechNet.
Available at: http://ww. nm crosoft.com technet/ prodtechnol /w ndows2000ser v/ nai nt ai n/

featusability/i nnmwp. nspx

[70] Basics of the Debian package management systefime Debian GNU/Linux FAQ
(September 14, 2005). Maintained by Javier Fernandezbamg

Available at:ht t p: / / www. debi an. or g/ doc/ FAQ ch- pkg\ _basi cs

[71] Vulnerability in Graphics Rendering Engine Could Allow Reen Code Execution
(912919) Microsoft Security Bulletin (January 5, 2006).

Available at:ht t p: // www. mi crosoft. com technet/security/bulletin/ns06-001. nspx

[72] ANELKAOS. Gmail Bug Vulnerability Advisory (October 2005).

Available at:ht t p: / / www. el hacker. net/ gmai | bug/ engl i sh\ _versi on. htm

[73] All Vulnerabilities discovered through ChangelLog entrie®pen Source Vulnerability
Database.

Available at:ht t p: / / www. osvdb. or g/ sear chdb. php?t ext =ChangelLog

[74] Genuine Microsoft Softwaréd/endor Website.

Available at:ht t p: / / www. mi cr osof t. coml genui ne/ def aul t. mspx?di spl ayl ang=en

[75] OracleMetalLink Vendor Website.

Available at:ht t ps: // met al i nk. or acl e. comf

REFERENCES 141

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

SunSolve Onlinevendor Website.

Available at:ht t p: / / sunsol ve. sun. com

Buffer Overruns in SQL Server 2000 Resolution Service ChRulable Code Execution
(Q323875) Microsoft Security Bulletin (July 24, 2002).

Available at:ht t p: // www. mi crosoft. com technet/security/bulletin/ns02-039. nspx

Moore, David; Paxson, Vern; Savage, Stefan; Shannafie€h; Staniford, Stuart and
Weaver, Nicholas.The spread of the Sapphire/Slammer woritechnical report The
Cooperative Association for Internet Data Analysis (CAN/ebruary 2003).

Available at:ht t p: / / www. cai da. or g/ out r each/ paper s/ 2003/ sapphi re/ sapphire. ht m

Cumulative Patch for SQL Server (Q316333licrosoft Security Bulletin (August 14,
2002).

Available at:ht t p: // www. mi crosoft. com technet/security/bulletin/ns02-043. nspx

Cumulative Patch for SQL Server (Q316333}licrosoft Security Bulletin (October 2,
2002).

Available at:ht t p: / / www. mi crosoft. comt echnet/security/bulletin/ns02-056. nspx

Elevation of Privilege in SQL Server Web Tasks (Q316388yrosoft Security Bulletin
(October 16, 2002).

Available at:ht t p: // www. mi crosoft. com technet/security/bulletin/ns02-061. nspx

FIX: Handle Leak Occurs in SQL Server When Service or ApfitineRepeatedly Con-
nects and Disconnects with Shared Memory Network Librstigrosoft Security Bulletin
(October 30, 2005).

Available at:ht t p: / / support. m crosoft. com defaul t.aspx?sci d=kb; en- us; 317748

Cooper, RussConfusion about version&NTBugTraq Mailinglist (January 28, 2003).

Available at:ht t p: // ar chi ves. neohapsi s. com ar chi ves/ nt bugt r ag/ 2003- q1/ 0045. ht m

Thurrott, Paul.Microsoft Releases SQL Server 2000 SR8ndowsITPro News (January
23, 2003).

Available at:ht t p: / / www. wi ndowsi t pro. conmf Article/Articlel D) 37800/ 37800. ht m

Compatibility and Resource Guid&echnical reportBest Software (July 7, 2004).

Available at:ht t p: / / www. bl yt heco. com pdf / bes/ m sc/ MAS500Conpat i bi | i t yGui de63. doc

REFERENCES 142

[86] Roberts, PaulMicrosoft Slammed by Its Own VulnerabilifpG News Service (January
28, 2003).

Available at:ht t p: / / www. pcwor | d. com news/ arti cl e/ 0, ai d, 109043, 00. asp

[87] Buffer Overrun in JPEG Processing (GDI+) Could Allow CodesEntion (833987)Mi-
crosoft Security Bulletin (September 14, 2004).

Available at:ht t p: / / www. mi crosoft. comtechnet/security/bulletin/ns04-028. nspx

[88] Hypponen, Mikko.Be careful with WMF filesF-Secure Anti-Virus Weblog (December
28, 2005).

Available at:ht t p: / / www. f - secur e. conf webl og/ ar chi ves/ ar chi ve- 122005. ht ml \ #00000753

[89] All About GDI+. Technical reportMicrosoft.

Available at:ht t p: // msdn. mi crosof t. coni security/gdi pl us/ defaul t. aspx

[90] Liston, Tom.GDI Scan Internet Storm Centre (October 2, 2004).

Available at:htt p: / /i sc. sans. or g/ gdi scan. php

[91] Chan, Jason.Essentials of Patch Management Policy and Practic@@stake (January
2004).

Available at:ht t p: / / www. pat chnmanagenent . or g/ pnessenti al s. asp

[92] British Standard/International Standard Organ@atBS/ISO 17799 Information technol-
ogy — Code of practice for information security managen2800).

[93] MacLeod, Kenneth JPatch Management and the Need for Metri¢s (July 14, 2004).
SANS Security Essentials GSEC Practical Assignment.

Available at:ht t p: / / www. sans. or g/ rr/ whi t epaper s/ best prac/ 1461. php

[94] Voldal, Daniel.A Practical Methodology for Implementing a Patch managerfeocess
In (September 26, 2003).

Available at:ht t p: / / www. sans. or g/ rr/ whi t epaper s/ best prac/ 1206. php

[95] White, Dominic and Irwin, BarryA Unified Architecture for Automatic Software Updates
In Proceedings of Information Security South Africa 2Q04ne 2004).

Available at:ht t p: / / www. cs. ru. ac. za/ resear ch/ st udent s/ gOOwW1690/ fi | es/ i ssa2004. pdf

[96] Swanson, MarianneGuide for Developing Security Plans for Information Tedogy
Systems Technical report National Institute of Standards (NIST), Computer Segurit

REFERENCES 143

Division, Information Technology Laboratory, Nationaktitute of Standards and Tech-
nology, Gaithersburg, MD 20899-8930 (December 1998). @p&ublication 800-18,
Federal Computer Security Program Managers’ Forum Wort&raup.

Available at:ht t p: // csrc. ni st. gov/ publ i cati ons/ ni st pubs/ 800- 18/ Pl angui de. PDF

[97] Carothers, TonyPort 1025/6000 Action (Part Ill)Internet Storm Centre Handler’s Diary
(December 11, 2005).

Available at:htt p: //isc. sans. org/ di ary. php?st oryi d=926

[98] Kohen, Javier and Rizzo, JulianDCE RPC Vulnerabilities New Attack Vectors Analysis
Technical reportCore Security Technologies (December 9, 2003).

Available at:ht t p: / / www. cor esecuri ty. coml conmbn/ showdoc. php?i dx=393\ & dxsecci on=10

[99] Wulnerabilities in MSDTC and COM+ Could Allow Remote Codedixion (902400Q)
Microsoft Security Bulletin (October 11, 2005).

Available at:ht t p: / / www. mi crosoft. comt echnet/security/Bulletin/ M505-051. nspx

[100] Gregg, MichaelCISSP Exam Cram.Xue (September 22, 2005). ISBN 078973446X.

[101] Bradley, Tony.Critical Elements For Patch Testing Policiek (June 17, 2005). Vol. 27,
Issue 24.
Available at:htt p: // ww. processor.com editorial/article.asp?article=articl es¥2Fp272492F22p24%

2F22p24%2Easp\ &gui d=8BF8F1B9C3044EDDB8172AF340C1667C\ &sear cht ype=0\ &\r dLi st =

[102] VMWare. VMWare Virtualisation Softwarevendor Website (June 26, 2006).

Available at:ht t p: / / www. vimwnar e. conf

[103] Pratt, lan.The Xen virtual machine monitoProject Website (April 13, 2006).

Available at:ht t p: / / www. cl . cam ac. uk/ Resear ch/ SRGE net os/ xen/

[104] Microsoft. Microsoft Virtual PC 2004 Vendor Website (June 26, 2006).

Available at:ht t p: / / www. mi cr osoft. coml wi ndows/ vi rt ual pc/ def aul t. nspx

[105] Microsoft. Microsoft Virtual Server 2005 R2/endor Website (June 26, 2006).

Available at:ht t p: / / www. mi cr osoft. coml wi ndowsser ver systent vi rtual server/ defaul t. nspx

[106] Shaw, Yun. Patch Management in Oracle Applications Release Ilgchnical report
Oracle Corporation (May 2005).

Available at:ht t p: / / whi t epaper s. zdnet . co. uk/ 0, 39025945, 60143559p- 39000388q, 00. ht m

REFERENCES 144

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Windows Update Services Deployment White Papschnical reportMicrosoft (Novem-
berember 2004).

Available at:ht t p: / / www. mi cr osoft. com wi ndowsser ver syst em’ wus/ depl oynment . mspx

Thompson, KenReflections on trusting trusin Communications of the ACMolume 27,
no. 8 (August 1984).

Dunagan, John; Roussev, Roussi; Daniels, Brad; Johsaron; Verbowski, Chad and
Wang, Yi-Min. Towards a Self-Managing Software Patching Process Usiagk3Box
Persistent-State Manifestdn Proceedings of IEEE International Conference on Auto-
nomic Computing (ICAC)institute of Electrical and Electronics Engineers, Indatch
2004).

Available at:ht t p: // resear ch. mi crosoft. com resear ch/ pubs/ vi ew. aspx?tr\ _i d=726

Sun, Yizhan and Couch, Alv&lobal Impact Analysis of Dynamic Library Dependencies
In Proceedings of the 2001 Large Installation System Admatieh Conference(LISAO01)
(USENIX Association: Berkeley, CAjage 145 (December 3, 2001).

Available at:ht t p: / / www. useni x. or g/ publ i cations/ i brary/proceedi ngs/lisa2001/tech/sun. ht m

White, Dominic and Irwin, Barry.Patching for Low Bandwidth Communitie$n Pro-
ceedings of Southern African Telecommunication Networl&pglications Conference
(September 11, 2005).

Available at: http://ww. cs. ru.ac. zal/ resear ch/ st udent s/ goOOwW1690/ fi | es/ sat nac2005/

pat chi ngbandwi dt h. pdf

Cumulative Security Update for Internet Explorer (8967 2Wljcrosoft Security Bulletin
(August 9, 2005).

Available at:ht t p: / / www. mi crosoft. comt echnet/security/Bulletin/ M505- 038. nspx

Keizer, GreggMicrosoft Initially Released Corrupted IE PatcliechWeb News (August
10, 2005).

Available at:htt p: //t echweb. com wi re/ security/ 168600527

Vulnerability disclosure publications and discussionckimg University of Oulu, Elec-
trical and Information Engineering Department (May 10,200

Available at:ht t p: / / www. ee. oul u. fi/research/ ouspg/ sage/ di scl osur e-tracki ng/

REFERENCES 145

[115]

[116]

[117]

[118]

[119]

[120]

[121]

McMillan, Robert. Adobe Adopts Monthly Patch CycléDG News Service (December
15, 2005).

Available at:ht t p: / / www. t her egi st er. co. uk/ 2005/ 12/ 15/ adobe\ _nont hl y\ _pat ch\ _pl an/

Emigh, JacquelineUsers Weigh In on Oracle’s Patch PlarWeek.com News (August
23, 2004).

Available at:ht t p: / / www. eweek. coni arti cl e2/ 0, 1895, 1638797, 00. asp

Livingston, Brian. Microsoft’s Patch-A-Month Club eWeek.com News (November 3,
2003).

Available at:ht t p: / / www. eweek. coni arti cl e2/ 0, 1895, 1490665, 00. asp

Bott, Ed.Patches: Once a month is not enouddd Bott's Microsoft Report Blog (March
24, 2006).

Available at:ht t p: // bl ogs. zdnet . com Bot t/ ?p=23

Lemos, RobertMicrosoft releases monthly security fix€NET News.com (October 15,
2003).

Available at: http:// news.com conl M crosoft +rel eases+nont hl y+securi ty+fi xes/ 2100- 7355\

_3-5091835. ht

Pruitt, Scarlet.Oracle moves to monthly patching scheduleG News Service (August
20, 2004).

Available at:ht t p: / / www. conput erwor | d. com securi tytopi cs/security/story/0, 10801, 95388, 00. ht m

Evers, Joris.Oracle to deliver security patches on quarterly basi®G News Service
(November 18, 2004).

Available at:ht t p: / / www. i nf owor | d. coml arti cl e/ 04/ 11/ 18/ HNor acl epat chquarterly_1. htm

[122] Litchfield, David.Opinion: Complete failure of Oracle security response attdnneglect

of their responsibility to their customerBugTraq Mailing list (January 6, 2005).

Available at:htt p: //seclists.org/lists/bugtrag/ 2005/ Qct/0056. ht mi

[123] Mogull, Rich.Flaws Show Need to Update Oracle Product Management Pexflech-

nical report, Gartner (January 23, 2006).

Available at:ht t p: / / www. gar t ner . com Di spl ayDocurnent ?r ef =g\ _sear ch\ & d=488567

REFERENCES 146

[124] Fisher, DennisChanging Patch Habits With MicrosofeWeek.com News (December 6,
2004).

Available at:ht t p: / / www. eweek. coni arti cl e2/ 0, 1895, 1735542, 00. asp

[125] Farrow, Rik.The Pros and Cons of Posting Vulnerabiliti¢$ Architect (May 10, 2005).

Available at:ht t p: / / www. i t archi tect. com shared/articl e/ showArticle.jhtnm ?articl el d=8702916

[126] Arora, Ashish; Telang, Rahul and Xu, Ha@ptimal Policy for Software Vulnerability
Disclosure In Workshop on Economics and Information Secufityay 2004).

Available at:ht t p: / / ww. hei nz. cnu. edu/ ~rt el ang/ di scl osure\ _fi nal M5\ _I S. pdf

[127] Arora, Ashish; Krishnan, Ramayya; Nandkumar, Anarelang, Rahul and Yang, Yubao.
Impact of Vulnerability Disclosure and Patch AvailabilityAn Empirical Analysis In
Third Annual Workshop on Economics and Information SegWEISO4April 2004).

Available at:ht t p: / / www. hei nz. cnu. edu/ ~rt el ang/ di scl osure\ _fi nal M5\ _I S. pdf

[128] Rauch, JeremyThe Future of Vulnerability Disclosureth ;login: the USENIX Associa-
tion Newslettervolume 11 (December 8, 1999).

Available at:ht t p: / / www. useni x. or g/ publ i cati ons/| ogi n/ 1999- 11/ f eat ur es/ di scl osure. htm

[129] Schneier, BruceCisco Harasses Security Research€ryptoGram Newsletter (July 29,
2005).

Available at:ht t p: / / www. schnei er. com bl og/ ar chi ves/ 2005/ 07/ ci sco\ _harasses. ht m

[130] Rain Forest Puppyrull Disclosure Policy (RFPolicy) v2.0Unofficial Policy (September
8, 2004).

Available at:ht t p: //www. wi retrip.net/rfp/policy.htm

[131] OIS Guidelines for Security Vulnerability Reporting angpense, V2.0rechnical report
Organisation for Internet Safety (September 17, 2004).

Available at:ht t p: / / www. oi saf ety. org/ gui del i nes/ secresp. ht m

[132] Cooper, Russ.NTBugtraq Disclosure Policy Technical report NTBugTraq (July 26,
1999).

Available at:ht t p: / / www. nt bugt r ag. com def aul t. aspx?si d=1\ &pi d=47\ &ai d=48

[133] CERT/CC Vulnerability Disclosure Policy Technical report CERT/CC (October 9,
2000).

Available at:ht t p: / / www. cert . or g/ kb/ vul \ _di scl osure. htn

REFERENCES 147

[134] Laakso, Marko; Takanen, Ari and Roning, Julatroducing constructive vulnerability
disclosuresin (2001).

Available at:ht t p: / / www. ee. oul u. fi/research/ ouspg/ prot os/ sot a/ Fl RST2001- di scl osur es/ paper . pdf

[135] Arora, Ashish; Krishnan, Ramayya; Telang, Rahul aadg;, Yubao An Empirical Anal-
ysis of Vendor Response to Disclosure Polity The Fourth Annual Workshop on Eco-
nomics and Information Security WEIS@8arch 2004).

Available at:ht t p: / /i nf osecon. net/ wor kshop/ pdf / 41. pdf

[136] Handling Mozilla Security Bugs Technical report Mozilla Foundation (February 11,
2003).

Available at:ht t p: // ww. nozi | | a. or g/ proj ects/ security/security-bugs-policy.htn

[137] Kean, KevinUpdated Advisory: WMF VulnerabilityMicrosoft Security Response Centre
(January 2006).

Available at:ht t p: // bl ogs. t echnet. com nmsr ¢/ ar chi ve/ 2006/ 01/ 03/ 416809. aspx

[138] Ford, Heather. An open invitation to culture-jamming with Laugh It OffCreative
Commons South Africa News (March 2005).
Available at: http://za.creati vecommons. or g/ bl og/ ar chi ves/ 2005/ 03/ 18/

an- open-invitation-to-cul ture-janmng-wth-1augh-it-off/

[139] Hauvrilla, Jeffrey S. and Dormann, WillVulnerability Note VU#181038 Microsoft Win-
dows Metafile handler SETABORTPROC GDI Escape vulnenabillechnical report
US-CERT (January 20, 2006).

Available at:ht t p: / / www. kb. cert. org/vul s/id/ 181038

[140] Anonymousls this a new exploitBugTraq Mailinglist (December 27, 2005).

Available at:ht t p: / / ar chi ves. neohapsi s. com ar chi ves/ bugtraqg/ 2005- 12/ 0305. ht m

[141] Exploit-WMFE McAfee Virus Information Library (January 5, 2006).

Available at:http://vil . ntaf eesecurity.comvil/content/vi_137760. htm

[142] Bleeding Snort Current Events WMF Exploit SignatuBleeding Snort Current Events
CVS Signature Repository (February 7, 2006).
Available at: http://ww. bl eedi ngsnort. cont cgi - bi n/ vi ewcvs. cgi / si gs/ CURRENT\ _EVENTS/ CURRENT\

_WVF\ _Expl oi t

REFERENCES 148

[143] Carboni, ChrisUpdate on Windows WMF 0-da$sANS Internet Storm Centre Handler’s
Diary (December 29, 2005).

Available at:http: //isc. sans. org/ di ary. php?st oryi d=975

[144] Wesemann, DanielThe most hated IP address of 20058ANS Internet Storm Centre
Handler’s Diary (December 28, 2005).

Available at:http: //isc. sans. org/ di ary. php?st oryi d=974

[145] Serino, Jim.RE: [Full-disclosure] Someone wasted a nice bug on spywaBkugTraq
Mailinglist (December 28, 2005).

Available at:ht t p: / / ar chi ves. neohapsi s. com ar chi ves/ bugtraqg/ 2005- 12/ 0320. ht m

[146] Guilfanov, llfak. Windows WMF Metafile Vulnerability HotEiHex Blog (December 31,
2005).

Available at:ht t p: / / www. hexbl og. com 2005/ 12/ wnf\ _vul n. ht m

[147] Frantzen, SwaNew exploit released for the WMF vulnerabilitANS Internet Storm
Centre Handler’s Diary (January 1, 2006).

Available at:htt p: / /i sc. sans. org/ di ary. php?st oryi d=992

[148] Ullrich, Johannes.Recommended Block ListSANS Internet Storm Centre Handler’s
Diary (January 2, 2006).

Available at:http://isc. sans. org/ di ary. php?st oryi d=997

[149] Sachs, Marcudnstalling a Patch SilentlySANS Internet Storm Centre Handler’s Diary
(January 2, 2006).

Available at:http: //isc. sans. org/ di ary. php?st oryi d=1004

[150] Sachs, MarcusScripting the Unofficial .wmf PatchSANS Internet Storm Centre Han-
dler’'s Diary (January 2, 2006).

Available at:http://isc. sans. org/ di ary. php?st oryi d=1008

[151] Sachs, MarcusChecking for .wmf vulnerabilitieSSANS Internet Storm Centre Handler’s
Diary (January 2, 2006).

Available at:http://isc. sans. org/ di ary. php?st oryi d=1006

[152] Guilfanov, Ilfak. WMF Vulnerability CheckerHex Blog (January 1, 2006).

Available at:ht t p: / / www. hexbl og. com 2006/ 01/ wnf\ _vul nerabi |l i ty\ _checker. htmn

REFERENCES 149

[153] Frantzen, SwaWMF FAQ SANS Internet Storm Centre Handler’s Diary (January 7,
2006).

Available at:http: //isc. sans. org/ di ary. php?st oryi d=994

[154] Sachs, Marcus.wmf FAQ Translations SANS Internet Storm Centre Handler’s Diary
(January 3, 2006).

Available at:htt p: //isc. sans. org/ di ary. php?st oryi d=1005

[155] Liston, Tom.Updated version of lifak Guilfanov’s patch / ,msi filBANS Internet Storm
Centre Handler’s Diary (January 1, 2006).

Available at:htt p: / /i sc. sans. org/ di ary. php?st oryi d=999

[156] Hypponen, Mikko. Hexblog.com overloadedF-Secure Anti-Virus Weblog (January 4,
2006).

Available at:ht t p: / / www. f - secur e. conf webl og/ ar chi ves/ ar chi ve- 012006. ht ml \ #00000767

[157] Reavey, Mike WMF Vulnerability Security UpdateMicrosoft Security Response Centre
Blog (January 4, 2006).

Available at:ht t p: // bl ogs. t echnet. com nsrc/ ar chi ve/ 2006/ 01/ 04/ 416847. aspx

[158] Nash, Mike. Mike Nash on the Security Update for the WMF Vulnerabiliicrosoft
Security Response Centre Blog (January 5, 2006).

Available at:ht t p: // bl ogs. t echnet. com nmsr ¢/ ar chi ve/ 2006/ 01/ 05/ 416980. aspx

[159] Mook, Nate.US Govt. to Test Windows Patches EaBetaNews (March 11, 2005).

Available at: http://ww. bet anews. com articl e/ US_Govt_to_Test_Wndows_Patches\ Early/

1110560071

[160] Nash, Mike. Mike Nash on the Security Update for the WMF Vulnerabiliicrosoft
Security Response Centre (January 2006).

Available at:ht t p: // bl ogs. t echnet. com nsrc/ ar chi ve/ 2006/ 01/ 05/ 416980. aspx

[161] Krebs, Brian.A Time to PatchWashington Post’s Security Fix (January 11, 2006).

Available at:ht t p: // bl ogs. washi ngt onpost. conl securityfi x/ 2006/ 01/a_tineline_of_mhtm

[162] White, Dominic. Microsoft Patch Speed Inconsistencie$HE pRODUCT Weblog (Jan-
uary 13, 2006).
Available at: htt p: // si nge. rucus. net/ bl og/ archi ves/ 687- M crosoft - Pat ch- Speed- | nconsi st enci es.

ht m

REFERENCES 150

[163] Haugsness, KyleBofra/lFrame Exploits on More Web Sites (updated); IFRAMIEbgr-
ability summary; Two more IE ExploitsSANS Internet Storm Center Handler’s Diary
(November 20, 2004).

Available at:htt p: / /i sc. sans. org/ di ary. php?dat e=2004- 11- 20

[164] Update for Microsoft Internet Explorer HTML Elements Vukrality. Technical report
US-CERT (December 3, 2004).

Available at:ht t p: / / www. us- cert. gov/ cas/techal erts/ TAO4- 336A. ht m

[165] Frantzen, Swa.Black tuesday - the day afterSANS Internet Storm Center Handler’s
Diary (December 14, 2005).

Available at:htt p: //isc. sans. org/ di ary. php?st oryi d=932

[166] Upcoming AdvisorieseEye Digital Security (January 2006).

Available at:ht t p: / / www. eeye. coml ht m / r esear ch/ upcomi ng/

[167] de Beaupre, AdrierHdandler’s Diary. SANS Internet Storm Centre Handler’s Diary (July
12, 2005).

Available at:http: //i sc. sans. org/ di ary. php?dat e=2005- 07- 12

[168] Toulouse, StephenMicrosoft presenting at the Black Hat security conferentcd.as
Vegas Microsoft Security Response Centre Blog (June 9, 2006).

Available at:ht t p: // bl ogs. t echnet. com nmsr ¢/ ar chi ve/ 2006/ 06/ 09/ 434600. aspx

[169] Microsoft. Microsoft BlueHat Security BriefingdechNet Security (March 8, 2006).

Available at:ht t p: / / www. mi crosoft. com technet/security/ bl uehat/sessi ons/ def aul t. nspx

[170] Vaas, Lisa. Oracle’s Silence on Database Security Wearing TheWeek.com News
(August 17, 2004).

Available at:ht t p: / / www. eweek. coni arti cl e2/ 0, 1895, 1637079, 00. asp

[171] Vaas, Lisa.Security Firm: Oracle Opatch Leaves Firms UncoveredVeek.com News
(August 22, 2005).

Available at:ht t p: / / www. eweek. conf arti cl e2/ 0, 1895, 1850287, 00. asp

[172] Mozilla Foundation Awards Bug BountieBlozilla Foundation News (March 28, 2005).

Available at:ht t p: / / www. nozi | | a. or g/ press/ nozi | | a- 2005- 03- 28. ht m

[173] RPM Guide The Fedora Project (November 11, 2005).

Available at:htt p: // f edor a. redhat . com docs/ drafts/rpm gui de-en/ch-intro-rpm htn

REFERENCES 151

[174] Debian Documentation TearA.Brief History of Debian Debian Foundation (August 10,
2005).

Available at:ht t p: / / www. debi an. or g/ doc/ manual s/ pr oj ect - hi story/ ch-rel eases. en. ht m

[175] Bartoletti, Tony; Dobbs, Lauri A. and Kelley, Marce$ecure Software Distribution Sys-
tem Technical report Computer Security Technology Center, Lawrence Livernidae
tional Laboratory, PO Box 808 L-303 Livermore, CA 94551 (@&, 1997).

Available at:ht t p: //ciac. |1 nl.gov/cstc/ssds/ssdswp. pdf

[176] Trusted Strategie®atch Management Sector Repdréchnical reportTrusted Strategies
(May 2004).

Available at:ht t p: / / www. t r ust edst r at egi es. coni nl 1/ rnr. php

[177] Brynjolfsson, Erik and Hitt, Lorin. Computing Productivity: Firm-Level Evidencdn
MIT Sloan Working Paper No 4210-qdune 2003). doi:http://dx.doi.org/10.2139/ssrn.
290325.

Available at:htt p: // ssrn. conf abst ract =290325

[178] Patch Management Product ComparisoRatchManagement.org (November 1, 2004).

Available at:ht t p: / / ww. pat chmanagenent . or g/ conpari sons. asp

[179] Landesman, ManGecurity Patch Management: Breaking New GrouFethnical report
Shavlik (2004).

Available at:ht t p: / / www. shavl i k. com whi t epaper s/ security\ _patch_nmanagenent. pdf

[180] Nicolett, Mark and Colville, RonniRobust Patch Management Requires Specific Capa-
bilities. Research Note T-19-4570 (March, 2003).

[181] Furrow, Chris and Manzuik, Stevenjecting Trojans via Patch Management Software
and Other Evil DeedsIn Black Hat EuropeBlack Hat, Inc, 2606 Second Avenue, 406,
Seattle, WA 98121 USA (August, 2005).

Available at:ht t p: / / www. bl ackhat . com pr esent ati ons/ bh- eur ope- 05/ bh- eu- 05- f ar r ow. pdf

[182] NVD Download and Product Integration Pagiational Vulnerability Database (January
2006).

Available at:ht t p: // nvd. ni st. gov/ downl oad. cf m

[183] Open Source Vulnerability Database Sear@5VDB Website (December 2005).

Available at:ht t p: / / osvdb. or g/ sear ch. php

REFERENCES 152

[184] X-Force: Alerts and Advisoriednternet Security Systems (January 2006).

Available at:htt p: // xforce.iss.net/xforce/alerts

[185] SecurityFocus: VulnerabilitiesSecurityFocus Vulnerability Database (January 2006).

Available at:ht t p: / / www. securi tyfocus. comf vul nerabilities

[186] New Security InformatianMicrosoft Website (January 24, 2006).

Available at:ht t p: / / www. mi cr osoft. coml at hone/ security/rss/defaul t. nmspx

[187] Debian FoundationSecurity Information Debian Security Team Website (February 13,
2006).

Available at:ht t p: / / www. debi an. or g/ security/

[188] FreeBSD VuXMLWebsite (February 7, 2006).

Available at:ht t p: / / www. vuxm . or g/ f r eebsd/

[189] SGUIL(tm) The Analyst Console for Network Security Moiniigr Website (2006).

Available at:ht t p: // sgui | . sour cef orge. net/

[190] DeepSight(tm) AnalyseSymantec Website (February 13, 2006).

Available at:htt p: // anal yzer . securi tyfocus. conl

[191] Open Vulnerability and Assesment Language O\ay 19, 2006).

Available at:http://oval .mtre.org/

[192] Open Vulnerability and Assesment Language OVAL - XML Sclidumna 9, 2006).

Available at:htt p: // oval . mi tre. org/ | anguage/ i ndex. ht m

[193] McDonald, Josh (2005).

Available at:ht t p: // xdel t a. bl ogspot . con!

[194] Percival, Colin. An Automated Binary Security Update System for FreeB$Master's
thesis, Computing Lab, Oxford University, Oxford (2003).

Available at:ht t p: / / ww. daenonol ogy. net/ freebsd- updat e/ bi nup. ht m

[195] Microsoft. Binary Delta CompressianTechnical repor{March, 2004).
Available at: http://ww. m crosoft. com downl oads/ det ai | s. aspx?Fam | yl D=

4789196¢- d60a- 497c- ae89- 101a3754bad6

REFERENCES 153

[196] Brennen, V. Alex.Strong Distribution HOWTOOnline HOWTO (April 1, 2003).

Available at:ht t p: / / www. crypt net. net/fdp/ crypto/ strong\ _distro. htn

[197] Sohn, Tae-Shik; Moon, Jong-Sub; Lee, Cheol-Won; Iml-Gyu and Seo, Jung-Taek.
Safe Patch Distribution Architecture in Intranet Enviroents In Security and Manage-
ment pages 455—-460 (2003).

[198] Vulnerabilities in Operating System Patch Distributiofechnical reportBindView, No
Longer Available.

Available at:ht t p: // razor . bi ndvi ew. coni publ i sh/ paper s/ os- pat ch. ht n

[199] Cohen, BramBitTorrent Vendor Website (2004).

Available at:htt p: // bi tconj urer.org/Bit Torrent/

[200] Cohen, Bramincentives Build Robustness in Bittorrefiechnical repor{may 2003).

Available at:ht t p: // bi tconj urer.org/ Bit Torrent/bittorrentecon. pdf

[201] Microsoft Corporation. Microsoft Baseline Security Analyser (MBSA) version 1i8.1
available Microsoft Website (July 7, 2005).

Available at:ht t p: // support. m crosoft. conf def aul t. aspx?kbi d=320454

[202] GFI. GFI Languard: Security scanning and patch managemé&feindor Website (June
26, 2006).

Available at:ht t p: / / www. gf i . conl | anguar d/

[203] Microsoft. Microsoft Systems Management SeiMendor Website (June 26, 2006).

Available at:ht t p: / / www. mi cr osoft. com snserver/

[204] IBM. Tivoli Software Vendor Website (June 26, 2006).

Available at:ht t p: / / www. i bm conl sof t ware/ tivoli/

[205] ConfiguresoftConfiguresoft: Configuration Management & Compliandendor Website
(June 26, 2006).

Available at:ht t p: / / www. confi gur esof t. comf

[206] Microsoft Windows Update Service Hotfa905).

Available at:ht t p: / / www. mi cr osoft. com wsus/

REFERENCES 154

[207] Patchlink.Patchlink Update: #1 Patch Management Software for Seguhe Enterprise
Vendor Website (June 26, 2006).

Available at:ht t p: / / www. pat chl i nk. com

[208] BigFix, Inc. BigFix Inc. Vulnerability Managemen¥endor Website (June 26, 2006).

Available at:ht t p: / / www. bi gf i x. comf

[209] Ecora. SECURITY COMPLIANCE & CONTROL MADE EASVYendor Website (June
26, 2006).

Available at:ht t p: / / www. ecor a. coni ecor a/

[210] FreeBSD.About FreeBSD PortsProject Website (June 26, 2006).

Available at:ht t p: / / www. f r eebsd. or g/ ports/

[211] Failures in Detection (Last 7 DaysyirusTotal Website (February 13, 2006).

Available at:ht t p: / / www. vi rust ot al . coni fl ash/ graficas/graficad_en. htm

[212] White, SR.Open Problems in Computer Virus Researtachnical repor{1998).

Available at:ht t p: / / www. r esear ch. i bm coni anti vi rus/ Sci Paper s/ Wi t e/ Probl ens/ Pr obl ens. ht m

[213] Software, MarshalWebMarshal Product InformatiorVendor Website (June 26, 2006).

Available at:ht t p: / / ww. mar shal sof t war e. com pages/ webmar shal . asp

[214] Patton, S; Yurcik, W and Doss, DAn Achilles Heel in Signature-Based IDS: Squealing
False Positives in SNORTNn Proceedings of RAID 200R001).

Available at:htt p: // mel . i ci ous. net/ids/rai dOl. pdf

[215] Malware Prevention through black-hole DNBleeding Snort Projects (March 3, 2005).

Available at:ht t p: / / www. bl eedi ngsnort . cont bl ackhol e- dns/

[216] PatchPoint(tm) SystenBlueLane Website (February 2006).

Available at:ht t p: / / www. bl uel ane. com

[217] Sachs, MarcusMore .wmf WoesSANS Internet Storm Centre Handler’s Diary (January
2,2006).

Available at:http: //isc. sans. org/ di ary. php?st oryi d=1002

[218] Ptacek, Thomas. Thomas Ptacek’s Second Rule Of Security Marketirngatasano
Security Weblog (November 21, 2005).

REFERENCES 155

Available at:ht t p: / / www. sockpuppet . or g/ t gbf /1 og/ 2005/ 11/t homas- pt aceks- second- rul e- of - security.

ht m

[219] Kojm, Tomasz ClamAV: Project NewsProject Website (June 26, 2006).

Available at:ht t p: / / www. cl amav. net /

[220] Foley, Mary JoMicrosoft Delays By a Year Delivery of Two New Patching Sys{duly
2004).

Available at:ht t p: / / www. mi crosoft-watch.comfarticl e2/0, 1995, 1656785, 00. asp

[221] Microsoft Windows Updaté005).

Available at:ht t p: / / www. wi ndowsupdat e. comf

[222] Windows Update Services Deployment White Papsrhnical reportMicrosoft (Novem-
ber 2004).

Available at:ht t p: / / www. mi cr osoft. coml wi ndowsser ver syst em’ wus/ depl oyment . mspx

[223] Zinman, Amit. Windows Update Services Revighovember 2004).

Available at:ht t p: / / www. wi ndowsecurity.com articl es/ Wndows- Updat e- Servi ces- Revi ew. ht ni

[224] Microsoft .NET Framework Version 1.1 Redistributable Reyg(March 2004).

Available at:ht t p: // go. mi crosoft. com fw i nk/?Li nkl d=9104

[225] Microsoft .NET Framework 1.1 Service Pack 1 for Windows &e2003(August 2004).

Available at:htt p: // go. mi crosoft. com fw i nk/ ?Li nkl d=35326

[226] Microsoft Windows Update Services BITS 2.0 beta for Wind2@@® Serve(November
2004).

Available at:ht t p: / / www. mi cr osoft. com wi ndowsser ver syst en? wus/ bet aeul aW n2k. nspx

[227] Microsoft Windows Update Services BITS 2.0 beta for Windasvser 2003November
2004).

Available at:ht t p: / / www. mi cr osoft. com wi ndowsser ver syst en? wus/ bet aeul aW n2003. nmspx

[228] Download Internet Explorer 6 Service PackSeptember 2002).

Available at:htt p: // go. mi crosoft. com fw i nk/ ?Li nkl d=22355

[229] Microsoft SQL Server 2000 Desktop Engine (MSDE 2000) Rela@december 2004).

Available at:htt p: // go. mi crosoft. com fw i nk/ ?Li nkl d=35713

REFERENCES 156

[230] Automatic Updates June 20Q2une 2002).

Available at:htt p: // go. mi crosoft. com fw i nk/ ?Li nkl d=22338

[231] Software Update Services Deployment White Papechnical reportMicrosoft.

Available at:ht t p: / / www. mi cr osoft. com wi ndowsser ver syst eml sus/ depl oynment . nspx

[232] Semilof, Margie.Microsoft taking steps to integrate WUS with Winddsirch 2004).

Available at:ht t p: / / sear chwi n2000. t echt ar get . com gna/ 0, 289202, si d1\ _gci 956193, 00. ht m

[233] Thurrott, PaulWhat You Need to Know About Windows Update Seryfses| 2004).

Available at:ht t p: / / www. wi ndowsi t pro. comi W ndows/ Article/ Articlel D)41969/41969. ht m

[234] Microsoft. Description of the new features in the package installeMfmndows software
updates. KB 832478Viarch 2005).

[235] Hoover, Ken.Ken's SUS Script§lune 2004).

Available at:ht t p: / / pant heon. yal e. edu/ ~kj h27/ sus- scri pts. ht m

[236] White, Dominic.SUS Reporting Tool®ecember 2004).

Available at:ht t p: // si nge. rucus. net/ sus/

Appendix A

Time-line of Notable Worms and Viruses

A.1 Introduction

While researching for this document much work was put intalysing past virii and worms.
This resulted in the formation of a Wikipedia article whicashsince been added to. The below
is a time-line of notable worms and viruses. This servesdogthe oft discussed incidents into
a greater context.

A.2 Time-line

A.2.1 2006

e January 20th: The Nyxem worm was discovered. It spread bg+mesling. Its payload,
which activates on the 3rd of every month, starting on Felyr@a attempts to disable
security-related and file sharing software, and destroy bfecertain types, such as from
Microsoft Office.

A.2.2 2005

e August 16th: The Zotob Worm and several variations of madweploiting the vulnera-
bility described in MS05-039 are discovered. The effect agesrblown because several

157

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 158

United States media outlets were infected.

A.2.3 2004

e December 2004: Santy, the first known "webworm" is launcheexploited a vulnera-
bility in PhpBB described in BID10701 and used Google in ordefind new targets. It
infected around 40000 sites before Google filtered the begwery used by the worm,
preventing it from spreading.

e May 1st: The Sasser worm emerges by exploiting a vulnetaliLSASS described in
MS04-011 and causes problems in networks, even intergiptisiness in some cases.

e March 19th: The Witty worm is a record-breaking worm in maegards. It exploited
holes in several Internet Security Systems (ISS) produttgas the fastest disclosure to
worm, it was the first internet worm to carry a destructivelpagl and it spread rapidly
using a pre-populated list of ground-zero hosts.

e Late January: MyDoom emerges, and currently holds the defoorthe fastest-spreading
mass mailer worm.

A.2.4 2003

e October 24th: The Sober worm is first seen and maintains ésgoice until 2005 with
many new variants.

The simultaneous attack of the Blaster and Sobig worms deausgassive amount of damage.
e August 19th: The Sobig worm (technically the Sobig.F worpresad rapidly via mail and

network shares.

e August 18th: The Welchia (Nachi) worm is discovered. Themvdries to remove the
blaster worm and patch Windows.

e August 12th: The Blaster worm, also know as the Lovesan wepread rapidly by ex-
ploiting Microsoft Windows computers vulnerable to expédirst described in MS03-026
and later in MS03-039.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 159

e January 24th: The SQL slammer worm also known as the Sappbima, attacked vul-
nerabilities in Microsoft SQL Server and MSDE described iB02-039 and MS02-061,
causes widespread problems on the Internet.

A.2.5 2001

e October 26th: The Klez worm is first identified.

e September 18th: The Nimda worm is discovered and spreadgghra variety of means
including vulnerabilities described in MS01-044 and bamkd left by Code Red Il and
Sadmind worm.

e August 4th: A complete re-write of the Code Red worm, Code Rbdgins aggressively
spreading, primarily in China.

e July 13th: The Code Red worm attacking the Index Server |SA&&&nsion in Microsoft's
Internet Information Services with a vulnerability debexd in MS01-033, is released.

e July: The Sircam worm is released, spreading through esnaaidl unprotected network
shares.

e May 8th: The Sadmind worm spreads by exploiting holes in Ifitin Microsystem’s
Solaris (Security Bulletin 00191)and Microsoft’s Intetrieformation Services (MS00-
078).

e January: A worm strikingly similar to the Morris worm, namig Ramen worm infected
only Red Hat Linux machines running version 6.2 and 7, usimge vulnerabilities in
wu-ftpd, rpc-statd and Ipd respectively.

e May: The VBS/Loveletter worm, also known as the "I love yourug appeared. As of
2004, this was the most costly virus to business, causingrgsiof 10 billion dollars in
damage.

A.2.6 1999

e March 26th: The Melissa worm is released, targeting Micitodtrd and Outlook-based
systems, and creating considerable network traffic.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 160

A.2.7 1998

e June 2nd: The first version of the CIH virus appears.

A.2.8 1995

e The "Concept virus" the first Macro virus is created

A.2.9 1992

¢ Michelangelo predicted to create a digital armageddon bro6March, with millions of
computers having their information wiped, according to asmaedia hysteria surrounding
the virus. Later assessments of the damage showed the afftetorbe minimal.

A.2.10 1989

e October 1989: Ghostball First multipartite virus discaaby Fridrik Skulason

A.2.11 1988

e November 2nd: The Morris worm, created by Robert Tappan igoimfects DEC VAX
and SUN machines running BSD UNIX connected to the Interauat, becomes the first
worm to spread extensively "in the wild", and one of the firglvknown programs ex-
ploiting buffer overrun vulnerabilities.

A.2.12 1987

e October: The Jerusalem virus is found in the city of Jerusalsrael. It is a destructive
virus programmed to destroy executable files on every oenue of Friday the 13th.

e November: The SCA virus, a boot sector virus for Amigas appeamediately creating a
pandemic virus-writer storm. A short time later, SCA rek=aanother, considerably more
destructive virus, the Byte Bandit.

APPENDIX A. TIME-LINE OF NOTABLE WORMS AND VIRUSES 161
A.2.13 1982

e A program called Elk Cloner, written for Apple Il systemscigdited with being the first
computer virus to appear "in the wild", i.e. outside the rgpmputer or lab where it was
created.

Appendix B

Analysis of WSUS

B.1 Introduction

On November 16th 2004, Microsoft announced the availgtulithe Windows Update Service
(WUS) Beta. This date came half a year after Microsoft oafiinplanned to release the ser-
vice[220]. Then four months later on March 22nd 2005, Miofosnnounced a new release
candidate (RC) and a name change, WUS was to be called WSUB{Ws Server Update Ser-
vices), and on June 8th 2005, Microsoft released WSUS to faetuwing. Given the growth in
focus and solutions for patch management over the last freadelays and changes are hardly
surprising. With the window from vulnerability announcemé exploit release rapidly dimin-
ishing, patching has become one of the essential tools ofrgheline of the security battle
grounds. Many organisations have been making do with MaftesSoftware Update Service
(SUS) for the last year with many more still looking for a gatnanagement solution. SUS was
seen as a quick-fix due to its limited nature, leaving more tivae administrator with handfuls
of hair. Microsoft has provided Systems Management Sels®tS) for enterprise patch man-
agement and other administration, however the price is Im@tys appropriate, particularly for
small to medium enterprises. It is hoped WSUS can addrese thsues.

This review will detail the experience with WSUS from ingiitibn to use. It will start with
an abridged description of WSUS’s installation and configjon and move onto a tour of its
abilities. The narrative then takes a turn for the techniadth the basic workings of WSUS
explained based on information gleaned from a live packptura. The review is concluded
with a list of useful WSUS resources.

162

APPENDIX B. ANALYSIS OF WSUS 163

B.2 What's New

WSUS introduces a number of new features, mostly due to thebaek-end that Microsoft
has implemented, WSUS uses the same back-end technologiycessdft's Windows Update
service[221]. These new features are:

e Reporting Features. SUS provided no reporting at all, alghdhe back-end implemented
it. This lead to administrators having to rely on third pawgls to derive what was going
on in their organisation. WSUS provides a host of reporteafdres, partially fulfilling
this much needed customer request.

e More Updates. In addition to operating system updates, Wisty6provides updates for
Office XP and 2003, Exchange and SQL server. It still only mles support for Microsoft
products and patches however.

e Update Filters. The administrative interface provideduldéter options to navigate the
thousands of updates.

e Target Grouping. Machines can now be placed into differeatigs allowing different
update approval options for each group. This is particylasieful for pushing patches to
a test lab before large scale deployment.

e Improved Distribution. WSUS now allows express updatesctviise binary patching to
push only those changes required (called deltas) ratheetidnole file. It also supports an
improved topology making distributing updates across tigamisation easier. Finally, the
download on demand feature can ensure that updates arecomtyahded when necessary.

e Patch Options. WSUS now allows several new update apprgt&res which enable
WSUS to optionally check if a update is required, install tipelate or remove the update.
WSUS also provides for automatic approval rules for speapiidates and target groups.

e Improved Update Options. The new version of the BITS (Backgd Intelligent Trans-
fer Service) includes new options which make installingatpd on client machines less
intrusive and disruptive.

¢ New Back-end. WSUS now sports a new back-end finished offa8QL database. With
the option of either SQL server or the free Microsoft Deskingine (MSDE).

APPENDIX B. ANALYSIS OF WSUS 164

e Secure Server Replication. Updates and configurationseaedcated between servers.
In addition SSL connections can be used in server to sergeseamer to client connections.

B.3 Installation

Installing WSUS is fairly straightforward. Microsoft hapeovided a good description of the pro-
cess and its options in their WSUS deploy guide[222] alonf wibrief guide by WindowsSe-
curity.com[223]. Thus, this section will be fairly brief.

B.3.1 Topology

Before an installation an administrator should be awardeftbpologies WSUS affords. With
the new grouping options and the ability to distribute WSld&ers, several different topologies
are possible. There are four basic models which can thenrnéioed to form fairly complex
systems if necessary. There are three primary componeats Microsoft Update (MU), the
WSUS server and the WSUS clients, called Automatic Updaig@ients.

B.3.1.1 Default

This is the 'normal’ way of doing things, with the WSUS serveceiving its updates and meta-
data from Microsoft Update (in a process called synchrditispand passing it on to its AU
clients. The meta-data contains extended informationtahewpdate, such as the licensing and
description, and can be separated from the actual updatdigsee B.1.

B.3.1.2 Grouping

With WSUS'’s new grouping feature allows AU clients to be gred separately. Each group
can then have its own patch approval options. This is useifutesting, allowing patches to
be pushed to a test lab before being pushed to the AU cliergpnoduction group. Grouping
does not allow for a machine to be part of, often requestedtipteigroups, however this is
not a disadvantage as requiring this is usually indicative poor topology with the additional
complexities required to implement this prohibitive. Segife B.2.

APPENDIX B. ANALYSIS OF WSUS 165

_rosoft Update
MU

SUS Server @ @@

AU Clients
Figure B.1: Default Topology
Group A
@ Group C
rosoft Update - » @ @
MU
SUS Server ﬁ @
Group B
AU Clients
Figure B.2: Grouped Topology

APPENDIX B. ANALYSIS OF WSUS 166

\./ ‘)
’ ‘ ‘\
SUS Server / / N \
-

AU Cllents

licrosoft Update
MU

\\
/

‘/‘J
)

AU Client

-

SUS Server

Figure B.3: Chained Topology

B.3.1.3 Chaining

As with SUS, WSUS allows for a WSUS server to synchronise fanmther WSUS server
rather than Microsoft Update. This is useful for creatingsartbuted hierarchical environment.
Microsoft recommends that the hierarchy be no more tharetleneels deep, though they have
tested it with up to five levels[222]. With this model a dowesim WSUS server will inherit the
approval and transfer setting of the upstream WSUS serueh &topology can also be used as

a disconnected architecture where WSUS'’s import/expatatgfeature allows for updates to be
hand-carried via sneaker hdtom a connected WSUS server to a disconnected one.See figure
B.3.

B.3.1.4 Client Download

It is not always practical to download updates to the WSUSesefor distribution. This is
particularly true in mobile environments where the AU cteeproximity to the WSUS server is

IManually delivering patches to each machine without a nekwo

APPENDIX B. ANALYSIS OF WSUS 167

Metadata A Updak
_> c‘ \\
/ MU

AU Cllents

icrosoft Update

SUS Server

Figure B.4: Client Download Topology

unknown. In such situations the WSUS server can be configorstbre only update meta-data.
This allows the WSUS server to retain control over update@a@ without needing to store or

distribute the updates themselves. The AU clients can tbemibad the approved updates from
Microsoft Update.See figure B.4.

B.3.2 Requirements

WSUS requirements are fairly minimal and typical of the agerserver. The requirements are
described in more detail in the WSUS Deployment Guide[222].

Microsoft recommends a 1GHz machine for <500 AU clients ar&{G&lz machine for >500
AU clients. It should also have at least 1GB of RAM. WSUS reeglieither Windows Server
2003 or Windows 2000 Server with both requiring the .NET feswark ver 1.1 SP1[224, 225],
BITS 2.0[226, 227] and IIS 6.0 and Windows 2000 Server reqgitE 6.0 SP 1[228]. Both
should have 30GB of an NTFS file system free for updates and f2€&zBfor MSDE. Microsoft
recommends using SQL Server over MSDE with >500 AU clientSD¥ for Windows Server
2003 (now named Windows SQL Server 2000 Desktop Engine or WE)Ss distributed with
the WSUS installer however Windows 2000 Server users wiletia download it[229].

The automatic updates client has the same requirements&ai&Uwill only work on Windows

2000 with Service Pack 3 or later, Windows XP and Windows 20@85US then uses SUS
to update the client to work with WSUS. However, this won’trvon Windows XP machines
without service packs installed, as it requires the SUS agg[230].

APPENDIX B. ANALYSIS OF WSUS 168

Figure B.5: WSUS Administrative Interface

3 http://wsus /wsusadmin/ - Microsoft Intern® I? 192.168.0.2 - 8 X ‘

Elle Edit View Favorites Tools Help | -:s!'
GBack - = - @ at | @) Search (| Favartes redia €3 | B S 5

Address [&] http:/fwsusfwsusadin | @0 |Lnks >

Welcome to Windows Server Update Services

“fou can use Windaws Server Update Services to quickly and relisbly deplay the latest updates to vour machines. Get the latest WSUS news From Microsaft

-4 Status as of Tuesday, May 03, 2005 3:42 AM

Updates Synchronization Status

Total: 172 Last synchronization: 4292005 1:28 PM
Appraved updates: 158 Last synchronization result: Success

Updates not approved: o Mext synchronization: IManual

Declined updates: 14 Current status: Idle

Updates with computer errars: o Synchronize now

Updates needed by computers: 81
Status of Downloads

Computers Updates needing files: a
Total: 3

Computers with update errors: a

Computers needing updates: 3

[ToDoList

L\. Review Security and Critical updates
155 Security and Critical updates have not been approwed For install.

e Review synchronization settings
15 new products and 11 new classifications have been added in the past 30 days,

2004 Microsoft Corporation. All rights reserved, Build 2.0.0,2340

B.3.3 Server

Server installation is facilitated by a wizard, which pretsehe user with three decisions: whether
to store updates locally or have clients fetch them from bBoft Update, whether to install
MSDE or use an existing SQL database, and whether to use fhigltdeeb site or create a new
WSUS site. ASP .NET 1.1 will be installed at the same time. Wizard will also allow for an
upstream WSUS server to be configured, instead of connetctibgcrosoft Update.

After a successful installation the WSUS administrativieriface (see figure B.5) can be found
athttp://server[:port]/WUSAdm n/, where [port] will only be used if WSUS was
not installed to the default site, in which case the port ba&l8530.

APPENDIX B. ANALYSIS OF WSUS 169

B.3.4 Client

WSUS uses the automatic update (AU) client’s self-updattife to install the new AU client on
each machine. The client is first upgraded from the cab filesdon \Selfupdate directory of the
web server. Once upgraded it installs the new Windows liestal1, BITS 2.0 and WinHTTP

5.1 which are needed to support the new configuration opt88'S affords. Windows XP SP2
already has an updated automatic updates client but wilsstf update to the latest version. A
more technical description of this process can be found iatiis document.

B.4 Configuration

WSUS configuration is similar to SUS configuration. The bébtawvof the WSUS server is con-

trolled through the WSUS administrative interface (seeréd15) while the behaviour of the AU

clients is handled through group policy or the registry.si$ection provides a brief introduction
to the various configuration settings available. Once atfagis documented in greater detall
in the WSUS deploy guide[222] with additional informatiovadable in the, currently, more

complete SUS deploy guide[231].

B.4.1 Server

Server configuration is done via the WSUS administratioreghtp://server[:port]/WSUSAdmin/)
(see figure B.6). Some options are shared with SUS and wilb@abvered in detail.

The WSUS server can be configured to synchronise with eitherdgbft Update or another
WSUS server, as discussed above. This requires informsticimas the server and proxy details
and a schedule for how often the WSUS server should syndeonihe syntax for entering
an upstream server is http://servernamel[:port], withrgjpanly used if the WSUS server is not
using port 80.

WSUS now supports updates for Office, Exchange and SQL Seweompared to SUS which
had far fewer updates. Microsoft hopes to expand this tofateir products, and are looking
into methods for securely distributing third party updatdsle maintaining the distribution se-
curity of signed updates[232]. This requires that the potsifor which WSUS should distribute

APPENDIX B. ANALYSIS OF WSUS 170

Figure B.6: WSUS Configuration

ahttp:,.\",.\"wsus,‘-"wsusadmin,«" - Microsoft InterngECe 192.168.0.2 - 8 X ‘

File Edit Wjew Favorites Tools Help | ;s!

G Back = = - @ o} | @Search (3] Favarites @Media @ | @' ==

Add 3 usjwsusadrin/

j Fode |L\nks S

Synchronization Options
= Wou can manually synchronize servers, view synchronization status, specify proxy server settings, and manage updates,

7] Automatic Approval Options
‘fou can specify how to automatically approve installation or detection of updates for selected groups, and how to approve revisions to existing updates,

L. Computers Options
‘f} Wou can specify how o assign computers to groups,

updates, be selected by adjusting the settings for whicdthyats, languages, and class of update
e.g. critical updates, security updates, service packslgli® managed (see figure B.8). Given

the much increased number of updates there is an optiondmatitally approve certain classes

of updates(see figure B.7).

WSUS provides two methods for grouping computers. The frsierver side targeting. This

allows an administrator to manually place machines thaé ltantacted the WSUS server into
chosen groups. The second, more powerful, option allowslibats themselves to advertise
to be put in a certain group (see figure B.9). This setting s ttontrolled on the client either

through group policy or registry settings. In both casestaninistrator needs to create the group
on the server.

The new distribution options afforded by WSUS allows for thaidth consideration to be better
accounted for. Deferred updates allow meta-data to be d@aeld separately from the update
files. This allows approvals to be disseminated and the epdainly downloaded if required by
an AU client connected to the WSUS sever (or a downstream WsRU&r). Express installation
is Microsoft catching up to FreeBSD with binary patchingallows for deltas to be sent to the
AU clients. These deltas only contain information that dtidae changed within selected files
rather than a replacement for the entire file. Express iasitath does incur a cost in the form of
a large initial download from to the WSUS server, as a delta&zh possible version of the files
needs to be distributed.

APPENDIX B. ANALYSIS OF WSUS

171

file Edt View Favorkes Tools

Figure B.7: Automatic Approval

192.168.0.2

Help

n Automatic Approval Dptions

Tasks

Updates

| Save settings

You can specify whether and how to automatically approve installation or detection for updates, Approwal takes place when an update or metadata about it is
downloaded ta your Windows Server Update Services server,
Mote: IF the installation and detection rules conflict, the installation rule will be used.

Approve for Detection

¥ automatically approve updates For detection by using the Following rule:

Classifications: Critical Updates, Security Updates Add/Remove Classifications...
Computer groups: All Computers Add/Remove Computer Groups... |

Approve for Installation

[T Automaticall approve updates For installation by using the Following rule:

Classifications: Critical Updates, Security Updates Bdd/Rermove Classifoations,.
Computer groups: All Computers £dd/Aemove Computer Grours |

Rewisions to Lpdates

Updated versions of updates that you have approved are occasionally released. You can choose whether to automatically approve revisions, If you do not
choose to automatically approve the revised version, the older version will continue to be appraved.

& Automatically approve the latest revision of the update
™ Continue using the older revision and manually approve the new update revision

Windows Server Update Services Updates

Wwindaws Server Update Services updates are needed to ensure computers can be updated correctly. IF WSS updates are not approved, some updates may
nok be correctly detected by computers,

W Automatically approve WSUS updates

|@ Dane

[| @ Trusted sites.

APPENDIX B. ANALYSIS OF WSUS

172

Ele Edit Wew Favortes Towls Help

Figure B.8: Product Update Selection

192.168.0.2

o Back * < ¢ e o} | @Sgar_ch

Address l@ http:/ fwsusiwsusadming

n Synchronization Options

Tasks

Schedule

I Undo changes

when you synchronize servers, you download new updates to this Windows Server Update Services server from Microsoft Update or an upstream Windows
ﬂ Synchronize now Server Update Services serwer, You can synchronize manually or set a schedule For daily automatic synchronization. Maote that when scheduling a daily
E Save settings synchronization from Microsoft Update, the synchronization will begin within 30 minutes after the specified time.,

& Synchronize manualky

© Synchronize daily at: | %00 AM - I

Synchronization Status

Products and Classifications

Last synchronization:

Manual

+/29/2005 125 FM Vou can specify the products For which you want updates and the types of updates you want
- Products: Update classifications:
Last synchronization result:
wWindows %P Family Critical Updates
Success

Security Updates
Next synchronization: Change... |

Chary

emove Product

Current status:
Idle

Provey Server Select the praducts forwhich you wank to download updates.

These praxy-server settings apply orly when this server s Products:)
[T Use aproey server when synchronizing | I) d

[T Exchange 2000 Server
[T Exchange Server 2003 []

Server name; |

Part number; (50 [~ Office
[T Use user credentials to connect to the praxy sere [Office 2003
[T Office xP
User name:
I osaL

Domairn: [T SGL Server
Password: [windows
™ windows 2000 Family

T allow basic authentication (password is sent in
[T windows Server 2003 Family

[T windows Server 2003, Datacenter Edition

| Update Source [Windows %P &4-Bit Edition Yersion 2003
| .

W windows %P Family

APPENDIX B. ANALYSIS OF WSUS

173

file Edt View Favorkes Tools

Help

Figure B.9: Client-Side Computer Grouping

192.168.0.2

o Back * < ¢ e o} | @S_gar_ch

Address l@ http:/ fwsusiwsusadming

Tasks

|6 This server is configured For computer-based targeting, Some changes to computers and groups cannot be made. Change settings |

& Remove the selected computer

ﬂi Create a computer group

Groups

All Computers: 3
Unassigned Computers: 3
patchlab: 0

Computets in this group: 3 Computers managed by this server: 3
Computer group: Unassigned Computers

i | Computer Mame Operating System Last Status Report Computer Graup
Wind 2 1 E
wirnzpsp2.patchlab.local Windows 5P 5J2/2005 3:12 AM Unassigned Computers
wsus.patchlab.local Windows Server 2003 5/3/2005 3:15 AM Unassigned Computers
| petas [status 2 Print status report
Computer group: Unassigned Computers
Requested group: patchlab
IP address: 192.168.0,22
Operating system: ‘Windows XP
Service pack: 1
Operating system language: en-US
Last status report: 5J2/2005 2:53 AM
Last contacted: 5J2/2005 2:52 AM

Hardware Information

Make: Microsoft Corporation
Model: virtual Machine
Processor: 86

BIDS version: 050002

[| @ Trusted sites.

APPENDIX B. ANALYSIS OF WSUS 174

B.4.2 Client Side

The new background intelligent transfer service (BITS y2:8d automatic update client allow
for several new configuration options on the client side {gpee B.10). The addition of these
options appear to be Microsoft’s response to the critici$rine less flexible options previous
versions provided. In particular the fewer restarts ana@tgreconfigurability should make the
process more pleasant for the desktop user. These optiohecaodified in several ways; active
directory group policy, local group policy or registry setfs. These configuration methods are
referred to as administrative policies, which are distfmain the user’s configuration. A few of
the options are common to SUS, therefore the focus will behenchanges and new options.
Modifying these via group policy can be done by opening tleeigmolicy editor and navigating
to Computer Configuration/Administrative Templates/Winsi@omponents/Windows Update
after loading the windows update administrative templategu.adm (this will automatically be
upgraded if done previously with SUS). Modifying the sej8rvia the registry requires that the
key HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Womds\WindowsUpdate[\Alje
edited.

There are new options related to how update notification em@ayed. These notification can
occur either before downloading and installation, jusbbeinstallation, or not at all. The first
option prevents the automatic update client’s user-iaterfrom being locked when administra-
tive policies are used to configure the client. This allows@al administrator to choose their
own notification settings. The next allows for non-admirgitdrs to be included in the group of
users allowed to receive update notifications.

With the introduction of grouping, client-side targetirsga method where an AU client will
advertise which group it should be a member of, allowingntido self-populate groups. Thus
there is an option to specify which group the AU client shaelguest membership of.

WSUS now takes more advantage of the agent on the AU cliedtsiiises a periodic check
where an AU client will connect and allow the WSUS server terirogate its patch status. This
option is specified in hours. The AU client will connect betnehe specified time and a 20%
offset. Thus if the option is 10 hours the AU client will cormhevery 8 to 10 hours.

A separation has been made between updates that requirad aesl those than don’t. Non-
restarting updates can be installed immediately withotifying the relevant user, if the user
is configured to receive installation notifications. Thi®wak the administrator to automatically

APPENDIX B. ANALYSIS OF WSUS

175

" Hi Group Policy Object Editor |@

Figure B.10: New BITS Options

192.168.0.2 -8 X

Elle Action Wew Help

[L[E1=]

& = |

=} Default Domain Policy [WSUS, patchlab, local] Policy
& Computer Configuration
(1 Software Settings
(] windows Settings
[Administrative Templates
(2] Windows Components
[Z1 MetMeeting
-7 Internet Explarer
-1 Application Compatibiity
L__] Internet Information Services
-1 Task Scheduler
-] Terminal Services
_| Windows Installer
L__,] Windaws Messenger
-] Windows Media Digital Rights Managemer
(221 Windaws Media Player
-3 Windaows Update

gﬂ User Configuration

#1-[1] Saftware Settings

[Windows Settings

(1 Administrative Templates

4 | 2

Setting State

Configure Automatic Updates

Display Properties

Requirements:
‘Windows Server 2003, XP SP1, 2000
SP3

Description:

Specifies whether this computer will
receive security updates and ather
important downloads through the
Windows automatic updating service.

This setting lets you specify if
automatic updates are enabled on
this camputer. If the service is
enabled, you must select one of the
Four options in the Group Paolicy
Setking:

2 = Motify before downloading any
updates and notify again befare
installing them,

wWhen Windows finds updates that
apply to this computer, an icon
appears in the status area with a
message that updates are ready to
be downloaded, Clicking the icon or
message provides the option to select
the specific updates ta download,
Windows then downloads the
selected updates in the background.
When the download is complete, the
icon appears in the status area again,
with notification that the updates are
ready to be installed. Clicking the icon
or message provides the option to
select which updates to install,

3 = (Default setting) Download the
updates automatically and notify
when they are ready to be installed

windows finds updates that apply ta
wour computer and dawnloads these

Figure Aukomatic
:‘fﬁ Specify intranet Microsoft update service lacation
‘;?ﬁ Enable client-side targeting
;ﬁ Reschedule Automatic Updates scheduled installations
_’Eﬂ Mo auto-restart For scheduled Automatic Updates installations
?’j Automatic Updates detection frequency
f{a Allow Aukomatic Updates immediate installation
ﬁ Delay Restart for scheduled installations
éﬁ Re-prompt For restart with scheduled installations
@ Allows nan-administrators to receive update notifications

x4

Enabled
Enabled
Enabled

Mat configured
Mot configured

Enabled
Disabled

Mot configured
Mot configured

Enabled

Extended A Standard /

APPENDIX B. ANALYSIS OF WSUS 176

Figure B.11: Remove Access to Windows Update

"Tii Group Policy Object Editor @ 192168.0.2 -8 X I |

Elle Action Wew Help
o |EmEE| 2

__j Defau\t Domain Policy [WSUS. patchlab. local] Policy B8 Start Menu and Taskbar
Computer Configuration

(1 Software Settings
__] Windows Settings
1 Administrative Templates
(2 Windows Components Display Properties
L__] MetMeeting

Remove links and access to Sefting | Stats | =
Windows Update @}(Remove uset's folders From the Start Menu Mot configured

links and access ko Windows Lpdate: Mot configured
‘% Remove common program groups from Start Menu Mot configured

B Ttk Bl Requirements: “ﬁ Remave My Documents icon from Start Menu Mot configured
-1 Application Compatibiity At least Microsoft Windows 2000 \—ﬁ Remove Documents menu fram Start Menu Mot configured
(7] Internet Information Services Description: ‘3 Remove programs on Settings menu Mot configured
-[17] Task Scheduler Presents users from connecting to the ,Qﬁ Remove Metwork Connections from Start Menu Mot configured
[0 Terminal Services wiindowss Update Web site, ﬁq Remove Favorites menu Fram Start Meno Mat configured
(21 Windows Tnstaller This setting blacks user access ko the "‘}’ Remove Search menu from Stark Menu Mot configured
-[7] Windows Messenger windows Update Web site at ‘:ﬂ Remave Help menu from Start Menu Mot configured
-[L] Windows Media Digital Rights Managemer | hittp: fjwindowsupdate, microsoft, com, gﬂ Remove Run menu From Statt Menu Mot configured
(1 windaws Media Player GISSJ tth'; sattl‘ngkrFemn\;is tshte \'tVIndDWS “*j Remove My Pictures icon From Start Menu Mot configured
[0 windawes Update REENe SYperIS TEH 1S 2L end 3(Remave My Music icon From Start Menu Hat configured

and from the Tools menu in Internet £ i gure
Explorer, 2’ Remove My Network Places icon from Start Menu Mat configured
Add Logoff to the Start Menu Mot configured

‘Windows Update, the online extension of 't"ﬂ L 4

Windouws, offers software updates to E‘ﬁ Remove Logoff on the Start Menu Mot configured
keep a user’s system up-to-date. The *fﬂ Remove and prevent access ta the Shut Down command Mot configured
= Windows Update Product Catalog % Remove Drag-and-drop context menus an the Start Menu Mot configured
:..] Windows Settings datermines any system files, security iﬁ i Eih b Tastbar.and Shart Flenu Cats Mot configured

e Adm\nlstratwe Templates fixes, and Microsoft updates that users =M Prevent changes to Taskbar and Start Menu Settings ot configure:
need and shows the newest versions “ﬁ Remove access to the context menus For the taskbar Mat configured
available for download. k}’ Do not keep history of recently opened documents Mot configured
tlsa, see the Hide the *Add programs ;:Hc\ear history of recently opened documents on exit Mot configured
From Microsoft” option” setting. ,_-:ﬂ Turn off personalized menus Mot configured
& Turn off user tracking Mot configured
% Add "Run in Separate Memory Space” check bax ta Run dialog box Mot configured
- [System :ﬂ Do not use the search-based method when resolving shell shorkcuts Mot configured

install updates that don't require a restart without disituy the desktop user unless an update
requires a restart. This should reduce disruptions to tbeusar.

In the case of scheduled installations two new options haee Iprovided. One allows a delay to
be inserted before continuing with a scheduled restart tlaadther allows the amount of time
before the user is re-prompted for a scheduled restart tpéafeed. Minor, but occasionally

useful changes.

The option to remove links and access to Windows Update wakable in SUS (see figure
B.11), but is often overlooked and is therefore mentionee.h& his will remove the link to
Windows Update in the start menu and will prevent non-apgdaypdates being installed from
Windows Update. This setting can be found in the group padyor atComputer Configura-
tion/Administrative Templates/Start Menu and Taskbar.

In addition to administrative policies, the update clieahde manipulated via the command
line. This is done by runningruauclt.exenvith command line switches. The two switches are:
/resetauthorizatiorwhich will delete the client side cookie, which normally égs after an
hour, and contains information such as the target groupdnmdormation on this can be found

APPENDIX B. ANALYSIS OF WSUS 177

in section B.7); anddetectnowwhich will force the AU client to connect to the WSUS server
and check for new approvals. When these switches are useth&ghey must be used in the
order they were mentioned i.&uauclt.exe /resetauthorization /detectnolmis is particularly
useful for debugging machines and forcing an update.

B.5 Patching

The process of patching machines is done is six steps: symisltion, approval, detection, dis-
tribution, installation, verification. This section withbk at each step, and how WSUS supports
it.

B.5.1 Synchronisation

During synchronisation meta-data is downloaded from araédtstribution point, in this case
Microsoft Update, and disseminated to other WSUS servatsAhhclients. This process can
also download the updates to the server allowing AU cliemfetch them locally, if WSUS has
been configured to do so. WSUS uses BITS to transfer the na¢taaehd updates in the back-
ground and supports resuming the process if it is interdupi®e progress of a synchronisation
is displayed on the front page of the WSUS administrativerfate (see figure B.5).

B.5.2 Approval

WSUS allows three types of approval to be applied to eachtepdatect only, install and remove
(see figure B.12). Currently no updates support the remotiergpout will in the future as it is
a function of the new Windows Installer. The update’s appl®ean apply to all machine’s or
one group. A group can also inherit its approvals from théal@onfiguration. The interface is
far easier to use allowing updates to be filtered by prodies$sdication, approval, date received
and by a text based search. The filtered updates can thentbd bgrcolumn.

APPENDIX B. ANALYSIS OF WSUS

178

file Edt View Favories

Tools

Figure B.12: Update Approval

192.168.0.2

Help

= Back =

-8 at | &) Search

Address l@ http:/ fwsusiwsusadming

Update Tasks

& Change zpproval
% Derline update

“f Filtered ¥iew: Supdates Total on this server:
Products: All Approval:
Classifications: Al Contains texnt:

172 updates
All updates

WSUS updates -

i |E||T|tle |CIass|F|Eat\on Released Approval -
W IJ Update for Barkground Intelligent Transfer Service (BITS) 2.0 and WinHTTR 5.1 (KB&42773) Critical Updates 10f4/2004 Install
Yiew & | Microsoft Windows Installer 3.1 Critical Updates 4/14j2005 Install
Select the criterla you want to use iy [Windows Installer 3.0 Critical Updates 11/12/2004 Declined
to filker the view, Ay [windows Installer 3.1 Beta Critical Updates 3f17§2005 Declined
Praducts and classfications: & |12 Windows Installer Update For Windows #P Service Pack 2 Critical Updates 372005 Declined

| Detals || Statws [Revisions | ‘S Prin stabus report
Appraval: a
'm ? This is a w515 update and should be approved For installation to ensure computers can be updated correctly. =
This update supersedes other updates. Before declining superseded updates, it is recommended that vou apprave the superseding update First and
Synchronized: | werify that the superseded updates are no longer needed by any computers. For more information see Approving Updates
IAny time ;I Title: Update for Background Intelligent Transfer Service (BITS) 2.0 and WinHTTP 5.1 (KB842773)
Contains text: Description: This software updates the Background Intelligent Transfer Service (BITS) to v2.0 and updates WinHTTP, These updates help
ensure an optimal download experience with Future versions of Automatic Updates, Windows Update, and other programs
that rely on BITS ta kransfer files using idle network bandwidth.
Classification: Critical Updates
Apply | Products: ‘Windows =P Family

Release date: Monday, Ockober 04, 2004

More information; hitkp: ffmesdn. microsoft.com/libraryidef ault aspPurl={library/en-us/bits/bits/bits start paoe asp*frame=true

KB article number: 842773

MSRC number; HNone

MSRC severity rating: Unspecified

Update ID: Zeleedbf-a5F6-4cdg-braF-310f4cfdbadl -

Installation Information |

Removable: o

May request user input: Mo

Restart behavior: iZan requesk restart

Must be installed exclusively: Mo :I

[| @ Trusted sites.

APPENDIX B. ANALYSIS OF WSUS

179

Figure B.13: Patch Status Detection

Ele Edit Wew Favortes Tools Help

3 http://wsus /wsusadmin/ - Microsoft Intern® I? 192.168.0.2 - ‘ 8 x ‘

| &

Ggack 0 - @ (o} | 80 Search (G| Favortes €0 Media &3 | [& &I

Address l@ http:/ fwsusiwsusadming

Home: Upd:

a Computers

j Fode |L\nks S

Tasks |6 This server is configured For computer-based targeting, Some changes to computers and groups cannot be made. Change settings |
sg(Remove the selected computer Computers in this group: 3 Computers managed by this server: 3
3—;& Create a computer aroup Computer group: Unassigned Computers
i | Computer Mame Operating System |Last Status Report Computer Group
e wirxpspla.patchlab.local wwindows XP 5J2/2005 2:53 AM Unassigned Computers
winzpspz.patchlab.local Windows %P 5J2/2005 3112 AM Unassigned Computers
All Computers: 3 wsus,patchlab.local Windows Server 2003 5i3/2005 3:15 &M Unassigned Computers
Unassigned Computers: 3
| petals || satus | g4 Print status report

Cumnulative Security Update for Internet Explorer For Windows %P Service Pack 2 (KB§90923 Detect only :J

Security Undate For Windows Messenger (KBGE7472) Detect only

Security Update for Windows %P {KB873333) Diebect only

Security Update For Windows 5P (RBE73339) Detect only

Security Update For Windows &P (RES85250 Detect only

Security Update For Windows ¥P (KB885835 Install

Security Update for Windows %P (KBS55836 Detect only

Security Update For Windows P (KB383113) Detect only

Security Update For Windows P (KBS88302 Detect only

Security Update For Windows 2P (RBSI0047) Detect anly

Security Update For Windows P (KB390175) Diebect only

Security Update For \Windows P (KBES90859 Detect only

Security Update for Windows 5P (REB91781) Detect only

Security Update For Windows &P (RES93066 Detect only

Security Update Far Windows P (KES93086 Detect only

Update for Windows %P (KB887742 Detect only deed

Microsoft Windows Installer 3.1 Install Installed

328310: Security Update Detect only Mot needed

329170 Security Update Detect only Mot needed

330994: April 2003, Security Update For Outlook Express 6 Detect only Mot needed :I

& [| [Trusted sites.

B.5.3 Detection

Periodically an AU client will connect to the server and pdeva list of platform details, installed
updates, hardware and drivers. This is then used by the W88rdo display which updates
are needed by the AU client and which have been succesdiisliglied (see figure B.13). This is
particularly useful for determining the patch status of ayaaisation. The frequency with which
an AU client connects to the WSUS server is configured on tieatc{see B.4.2). This is also

where the AU client synchronises with its WSUS server.

APPENDIX B. ANALYSIS OF WSUS 180

B.5.4 Distribution

Updates are distributed over HTTP using the backgroundligeat transfer service (BITS),
which supports resuming of interrupted downloads and dya#mottling of downloads to use
spare bandwidth. Updates can either be downloaded fromah WE&US server or Microsoft
Update depending on the topology (see section B.3.1). iDigion has been made more flexible
with the introduction of download on demand, where update®aly downloaded to the server
when needed, and express updates, which make use of birtahyrga(see section B.4.1).

B.5.5 Installation

Many of the patching improvements in WSUS are due to the newd@ds Installer ver 3.
Microsoft has converged their many patching methods intowich are supported by the new
installer[233]. The new MSI packages will also support gtatiation of updates[233], hence the
new remove approval setting. In addition these packagésagilire less restarts and will support
binary patching[233], hence the introduction of expressatigs. Other powerful switches have
been added and more detail can be found from Microsoft[234].

B.5.6 Verification

An important part of any patch management solution is thityalbd verify that the patch was
actually installed. In WSUS this is achieved through the samerface used for detection (see
figure B.13). The AU clients check in after installing updaaed after a machine restart in which
updates are installed.

B.6 Reporting

The single largest problem with SUS was its complete lackepbrting. WSUS offers four

reports officially labelled as such (see figure B.14). The btaast useful are a breakdown of
updates or computers which allows an administrator to doivn to see statistics for groups
and individual AU clients or updates(see figures B.15 and®B.These reports can be filtered

APPENDIX B. ANALYSIS OF WSUS 181

Figure B.14: WSUS reports

/2 http:/ fwsus /wsusadmin, - Microsoft Internd & 192.168.0.2 - 8 X ‘
| &

Elle Edit View Favartes Tools Help

Ggack - = - @ o} | Qi search Favortes € vedia €% | - & 5

j &G |Lmk5 i

1 Status of Updates
il
j':J View the status of all updates for the computers in various groups.

L. Status of Computers
% View a report showing the status of client computers and the status of updates on those computers.,

Synchronization Results
ﬁ View a list of updates, revisions, and errors that have occurred during synchronization.

Settings Summary
H
6. View a printable list of the current Options page settings.

by approval and groups, and can then be sorted by each collinis not the only reporting
in WSUS as many other screens provide reporting features, asi the computer and update
screens (see figures B.13 and B.12). On the back-end all ahfihenation is stored in a SQL
database, allowing ad-hoc queries to be address throughphity tools (such as Microsoft
Systems Management Console). This is a great improvemen&sS, but many administrators
will probably require more.

B.7 Packet Capture

To get a better look at how WSUS does its work, Ethereal wad ts@erform a packet cap-
ture of the communications between an AU client and the WS&itges. This revealed several
improvements over SUS. Further, it demonstrated the wgrkinWWSUS which have not been
published in much detail as yet. The testing here was peddrom a variety of WUS and WSUS
pre-releases and so some of the bugs may have been resolved.

B.7.1 Steps Performed

The relevant tasks performed during the packet capture:were

APPENDIX B. ANALYSIS OF WSUS 182

Figure B.15: Report by Computer

3 http://wsus /wsusadmin/ - Microsoft Intern® & 192.168.0.2 - 8 X ‘

Elle Edit View Favorites Tools Help | -:s!'
GBack - = - @ at | @) Search (| Favartes redia €3 | B S 5
Adress [@] heepsffussusjwsusadhmin =] @60 |Links >

W Status of Computers

Tasks Status of Computers for: W3LS Generated: 5/3/2005 3:27 AM

Computer group: All Computers

= Print report
= P Status: Installed, Needed

Yiew

! Computer Name: & Installed Meeded }Not needed Unknawn Failed |Last Updated
Zelectibeitans v Nt g ¥ winepspls patchlsb Jocel : 7+ & o 0 /22008
ot e [+ winxpspZ patchlab local 1 19 138 o i} sf2/2005
Al Computers - = =} wsus. patchlab.local 1 3 154 0 0 Si3jz2005
Status: Update Title | Approval | Status
W Installed Critical Update For Windows Media Playver Script Commanids (KESZE026; Detect anly d

Security Update For Microsoft ata Access Components (KES32483) Detect only
[# Heeded Security Update For Windows Media Plaver 9 Series (KBS65492) Detect only
™ Mot needed Microsoft ‘Windows Installer 3.1 Install Tnstalled
™ Unknown
[~ Failed

Apply |

10.

. A new Windows XP SP1a AU client is joined to the active dioeg domain.
. AU client self-updated.
. The new AU client installs Windows Installer and BITS ufsta required a restart.

. Logged in with some automatic update activity. The loggeddministrator was not in-

formed, although the icon appeared briefly. A restart wasired.
Logged in and 24 new updates were downloaded.

Updates were installed, restart was required.

. WSUS server synchronised with Microsoft Update.

. wuauclt.exe /detectnowas run from command line on the AU client.

One critical update detected, downloaded and installed.

The same critical update was detected, downloaded atalled multiple times until ap-
proval was revoked on WSUS server.

APPENDIX B. ANALYSIS OF WSUS

183

Flle Edit View Favarkes Tools

Figure B.16: Report by Update

192.168.0.2

Help

o Back * < ¢ e o} | @Sgar_ch

Address l@ http:/ fwsusiwsusadming

W status of Updates

Tasks

Status of Lpdates for: WsUS

Generated: 5/3/2005 3:26 AM

._Q Print repart

Computer group: All Computers

Apply |

(BITS) 2,0 and WinHTTP 5.1 (KBE42773)

Status: Installed
Yiew
Title & Installed Needed Hotnesded | Unknown Failed | Last Updated
Select the criteria you want to use g =
to Filker the view. ¥ Microsoft Windows Installer 3.1 3 o 0 i} 0 Sfzj2005
[+ QE27696: Internet Information Services Securit: 1 o 7 o 1} Sfzf2005
COMER At Roll-up Package
| &l Computers =l = Security Update, February 14, 2002 (Internet 1] 2 a i 5(2j2005
Shatus: Explorer 63
¥ Installed | Computer Group | Approval | Deadine | Instaled | Meeded | Mot needed | Unknown | Failed
™ Hesded Al Computers Detect only A 1 o 2 o 1]
I ot needed | Computer Hame | Status |
winxpspla.patchlab.local Installed ‘
™ Unknown
Unassigned Computers Same as Al Same as Al 1 1] 2 0 o
I Failed Computers graup Computers group
Update For Backaround Intelligent Transfer Service 1 o 2 a o Sizf2005

[| @ Trusted sites.

APPENDIX B. ANALYSIS OF WSUS 184

B.7.2 Resulting Network Traffic

By comparing the resulting packet capture to the steps pa&d above, the interactions between
the WSUS server and the AU client was discovered. Below israndiogical list of recorded
HTTP request traffic between the WSUS server and AU clier ismanalysis.

e /iuident.cab - This stands for ’Industry Update Identificat and is how the client’s ver-
sion is identified. This .cab file along with the rest below wasestamped by Verisign and
signed by Microsoft. If this were the first communication ahachine with a WSUS AU
client rather than a SUS AU client (e.g. Windows XP with SP@&xtthese first three steps
are not seen and the traffic would start with a call to wuiabet.

e Once it is determined that this is a SUS client, the self-tgdéf@m point 2 of the above
section (B.7.1) is performed. The client is instructed tovdimad the relevant .cab files
(starting with wacomp.cab which contain version inforraatior the individual client files)
of the new automatic update client. In this client configmrathe files were stored in
/selfupdate/au/x86/XP/en/ on the IS server.

e /wutrack.bin - After the self update the client requestsrack with a parametrised query
string. With SUS, the request of wutrack.bin was used foortépg and statistics on the
patch process. The parameters provide information on tspéthe clients behaviour,
including platform, activity and the KB of the patch beingtalled (more information can
be found on page 83 of the SUS deploy guide[231]). This methbdw third party SUS
reporting tools were developed (e.g. K. Hoover’s[235] or BayWhite’s [236]). With
WSUS the item and activity parameters are not used but phatfaformation is provided.
This was the only request to wutrack.bin seen in the wholéuca@and appears to be left
for backwards compatibility.

¢ /wuident.cab - This stands for Windows Update Identificatod contains AU client ver-
sion information. This request includes a date stamp asaper.

e /wusetup.cab - This contains an .inf and .cat file which dargatup information, such as
dil version and registration information, for the new austim update client. This request
also includes a date stamp as a parameter.

e From here the new automatic update client communicated théhWSUS sever using
a SOAP based web service. The format used to describe thededts is: [returned
information] MethodName (passed information)

APPENDIX B. ANALYSIS OF WSUS 185

— [config] GetConfig
— [auth cookie] GetAuthCookie

— [cookie] GetCookie (encrypted(auth cookie))
After this the returned cookie is encrypted and sent as tkarpble to all future
transactions. This cookie will contain information suchlastarget group of the AU
client and expires after an hour.

— RegisterComputer (a SOAP XML file is passed with the full folah information)

— [required update ID’s] SyncUpdates (system informatiaichsas platform informa-
tion, installed updates and installed drivers) ...

This is how the WSUS server knows what updates are neededecciiémt. This
method is be called several times. The first time it is caltezldlient sends empty
update ID parameters. The last time itis called it containsgs of hardware drivers
installed on the client.

— [metadata] GetExtendedUpdatelnfo (update meta-data)

This includes information such as the EULA and descriptibeach update.

— [confirmation] ReportEventBatch (meta-data and sync wgsdstiatus)

Information about the status of the client registratioreisimed. The client passes a
large XML file to the server here detailing the status of thdaips and once again
providing platform information.

— The first batch of updates is then downloaded as per point Babo this case it is
the Windows Installer 3.1 and BITS 2.0 updates. Once iresddthese will allow the
full WSUS functionality to be used. Files are downloadedfrsub-directories of the
/Content/ virtual directory in chunks, presumably to all@suming of downloads if
the process is interrupted.

— [confirmation] ReportEventBatch (update download status)

Information about the status of the download of the patchéss is sent before the
update is installed, but after it is downloaded. Accordimthe WSUS deploy guide,
the AU client should request meta-data from the WSUS segenafter download-

ing but before installation[222]. This is to ensure thatrappls revoked during the
download are not ignored. However there were no separatesegrepresenting this,
but it is presumed it would occur here.

— [confirmation] ReportEventBatch (update installatiorissa

APPENDIX B. ANALYSIS OF WSUS 186

Before the client restarts and after the updates have begadled another report is
made. A separate report is made for each installed update.

e After a restart the behaviour seen in point 4 (of the preverdion B.7.1) is seen. No
notification was received by the logged on administratas tlonflicted with how group
policy had been configured. It was assumed that updates foedrate install were being
installed as that optiohad been activated (see section B.4.2). However a restart was
required, which should not happen if this activity was assalteof immediate updates, as
they do not require a restart. This resulted in the followisg of the web service:

— [confirmation] ReportEventBatch (update installatiortissa

This is a report on the, now complete, installation of theaipd installed before the
reboot.

— [location on the web server of updates] GetFileLocationmléte ID’s and file di-
gests)

— The updates are then downloaded. Once again the AU clientdbbeck that none
of the approvals for the downloaded updates have been rdvbhkeng the download.
It is presumed that this check would be part of the GetFilations method.

e The machine is then restarted and 24 updates are availapég psint 5, after which these
calls are made:

— [confirmation] ReportEventBatch (update installationgress) ...

This is presumed to be reporting on the status of the instatl@f updates from the
previous point.

— [update location] GetFileLocations (update ID’s and filgedits)
— The updates are then downloaded and installed.
— [confirmation] ReportEventBatch (update installationgress)

e The machine is then restarted and another call to ReportBat&rh is made before point
8 is run. Runningvuauclt /detectnowesulted in:

— /wuident.cab
/wusetup.cab

These request are made with a date stamp as a parameter.

APPENDIX B. ANALYSIS OF WSUS 187

— [required update ID’s] SyncUpdates (system informatiaichsas platform informa-
tion, installed updates and installed drivers) ...

— [metadata] GetExtendedUpdatelnfo (update meta-data)
— One update is then downloaded and installed.

— [confirmation] ReportEventBatch (update installationgress)

These are the items of interest. The full packet capture adable from this siteht t p: //
si nge. rucus. net/ masters/fil es/ WBUS- packet capt ure. t ar. gz (warning this
is a 60MB file) for further analysis.

B.7.3 Analysis

From the information above, a pattern of behaviour can bepap

When the AU client first contacts the WSUS server it makes eqoiests, each with a date stamp
as a parameter. The files are returned timestamped and signed

1. wuident.cab

2. wusetup.cab

After this all future interactions (apart from BITS downtbag the updates) are done via a web
service.

After which if the AU client does not have a cookie or its camkias expired the following
handshake is made with the WSUS server:

1. GetConfig
2. GetAuthCookie
3. GetCookie

4. RegisterComputer

APPENDIX B. ANALYSIS OF WSUS 188

If the AU client still has a valid cookie, the above does natuwc The cookie is then pre-pended
to all future transactions.

If the WSUS server has synchronised with an upstream sana the AU client’s last synchro-
nisation, a new synchronisation is performed. This lodkes: li

1. SyncUpdates
2. GetExtendedUpdatelnfo
3. ReportEventBatch

4. Updates are downloaded.

If the AU client does not need to synchronise but has pendiugtes, a call is made to:

1. GetFileLocations

2. Updates are downloaded.

A reporting call is made after every action, and would be maiftler an update sync, update
download and update installation. After the updates arenttmvded the call is made:

1. ReportEventBatch

After the installation of the updates another report is made

1. ReportEventBatch

If a restart is required to install any of the updates, arotiad is made after the machine has
rebooted and, presumably, installed the updates.

1. ReportEventBatch

APPENDIX B. ANALYSIS OF WSUS 189

B.7.4 Packet Capture Summary
B.7.4.1 Interface

On the whole WSUS seems to be better designed. It utilisepan 8OAP based web service,
keeps track of each interaction and provides far more inébion on the patching process. SUS
on the other hand, required third party log analysers tapnét an obscure query string. The
use of a standard web service should make it easier for thity pxtensions to be created. The
large amount of information generated should allow for mdifferent reporting options beyond
what WSUS currently offers.

B.7.4.2 Security

There are two security worries here, the first is disclos@isensitive information and the second
is interference with the patch process. The downside of xtra enformation mentioned above
is that a lot of information about client machines is beingtses clear-text, this information
includes a list of hardware, installed drivers and somewsoft being used. There is enough
information to allow an attacker to build a replica systertetst attacks on. This is a worry, but it
can be mitigated by good network design. The second worgsistroublesome as a man in the
middle attack (which the cookie exchange may be vulnerabhduld not be able to circumvent
the security of the signed patches.

B.8 Resources

There are several fairly useful resources for WSUS availaBeveral were quite useful while
writing this document.

1. Microsoft's WSUS pagéatt p: // ww. m crosoft. com wsus/
2. The WSUS Wikint t p: / / wsus. edi t ne. com

3. SUS Servenht t p: / / ww. susserver. con

4. Patch Management Mailing Likt t p: / / wwww. pat chhmanagenent . or g/

APPENDIX B. ANALYSIS OF WSUS 190

B.9 Conclusion

WSUS is definitely a large step in the right direction. It hagny great improvements over
SUS, which seem to indicate that Microsoft is listening te tonsumer and responding to their
communities security needs. The interface is easy to us@mrvities some great functionality.
The extra features provided on the client-side are equatlgzeme. Microsoft has developed a
good architecture from which their patching strategy cabditéer managed and built upon. The
most notable problem is that WSUS still only supports a kaitange of Microsoft’s products
and is sorely lacking support for third party updates. Somihe@se problems are resolved in
Microsoft's Systems Management Server (SMS).

