Blue

AppSec

Discovery and Fuzzing for SQL injections with Web 2.0 Applications

Abstract

Web 2.0 application assessment is becoming increasingly challenging due to their
behavior and implementation of the components. It is imperative to identify hidden Web
2.0 resources and fuzz them to detect SQL injection possibilities. This paper describes
some techniques and approaches to perform effective assessment on Web 2.0 applications
on the basis of our recent experience and cases which were analyzed on the field.

Detecting Web 2.0 calls

First step is to identify few hidden calls and resources from Web 2.0 applications to
perform fuzzing and response analysis on it. Web 2.0 applications are running on Ajax or
Flex/Flash platform in RIA space. Here are few techniques by which one can identify
these resources and reconstruct the possible HTTP(S) requests.

a.) JavaScript Analysis

Ajax calls are hidden in Java Script and one needs to analyze Java Script thoroughly to
identify these entry points into the system. To discover these points we did our analysis
by parsing Java Scripts using JS parser or regex, it is one of the ways to identify key calls
and dissect possible URLs along with invoking mechanism.

Examples,

Tracking XHR call and fetching all possible open calls
http.open("POST", "/json/jservice.ashx", true);

If application is using some toolkit then one needs to identify respective calls for it like
over here we have it for prototype.
var myAjax = new Ajax.Updater(target, ‘json/jservice.ashx’, {method: 'get'});

By this mechanism either by parsing JavaScript thoroughly or using regex we can get all
possible calls and that helps in reducing analysis surface.

b.) HTTP traffic analysis
Once analysis surface is restricted to few resources one can open those pages into

browser and analyze HTTP traffic. It is also possible to spider/crawl these pages in
automated fashion by driving browsers like IE/Firefox using their respective drivers like

Blueinfy Solutions Pvt. Ltd 1



Watir (for IE) or Chickenfoot (for FireFox). At the same time it is interesting to use
plugins like Firebug to segregate XHR traffic from regular HTTP traffic. This can help in
mapping actual JavaScript to HTTP traffic as shown below.

POST http://192.168.1.56/jJson/jservice.ashx HTTP/1.1

Host: 192.168.1.56

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.9.0.1)
Gecko/2008070208 Firefox/3.0.1 Paros/3.2.13

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;9=0.8
Accept-Language: en-us,en;q=0.5

Accept-Charset: 1S0-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Content-Type: text/plain; charset=utf-8

X-JSON-RPC: getProduct

Referer: http://192.168.1.56/

Content-Length: 51

Pragma: no-cache

Cache-Control: no-cache

{"id":4,"method":""getProduct", " params":{ "id" : 4}}

In above case we are able to identify JSON request hitting to JSON-RPC running on
backend server. We can use regex patterns to identify various different structures of
HTTP request which are not falling into traditional name-value pair category. These
structures clearly define Web 2.0 calls in the form of XML-RPC, SOAP, JSON-RPC, JS-
Array, JS-Object etc.

c.) RIA call detections

We used JavaScript parsing to reduce analysis surface for Web 2.0 applications in first
section, we can use same technique to identify RIA calls running over Flex based Adobe
applications.

Example,

<OBJECT classid=""clsid:D27CDB6E-AE6D-11cTf-96B8-444553540000""
codebase=""http://download.macromedia.com/pub/shockwave/cabs/flash/swfla
sh.cab#version=6,0,0,0" WIDTH="645" HEIGHT="660" id="myApp"
ALIGN=""Center">

<PARAM NAME=movie VALUE="products.swf"> <PARAM NAME=quality VALUE=high>
<PARAM NAME=bgcolor VALUE="blue'> <EMBED src="products.swf"
quality=high bgcolor=#333399 WIDTH="'645" HEIGHT="'660" NAME="'myApp"*
ALIGN=""Center"' TYPE="application/x-shockwave-flash"
PLUGINSPAGE=""http://www.macromedia.com/go/getflashplayer'></EMBED>
</OBJECT>

In above page we can identify hidden source of SWF file and we can restrict our analysis
on it. Once again we can either load page into browser window and invoke SWF driven
calls or decompile swf component and dissect information. Depending on the version of
flash, we can perform decompiling tactic. It is also possible to capture remoting traffic

Blueinfy Solutions Pvt. Ltd 2



using proxy like Charles that provides AMF streams or using tracers for Flash
applications. Hence, by adopting any of the above approaches one can discover hidden
Web 2.0 calls running over Java Script or RIA. These calls can be sending JSON or XML
traffic back to application.

Fuzzing Web 2.0 structures

Next, we need to fuzz Web 2.0 structures for various different values and try to figure out
the possible vulnerabilities. In work we tried to fuzz for SQL injections and analyze
responses. One can use any HTTP based fuzzer to send different values but one need to
make sure it keeps the JSON and XML structures as it is else will not get processed at
server end. You can also use wsScanner (http://blueinfy.com/tools.html) to do
Web 2.0 fuzzing. It has capabilities to fuzz these structures and streams.

Example,
Here is a request which broke the JSON services on other side.

POST http://192.168.1.56/json/jservice.ashx HTTP/1.1

Host: 192.168.1.56

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.9.0.1)
Gecko/2008070208 Firefox/3.0.1 Paros/3.2.13

Accept: text/html,application/xhtmi+xml,application/xml;q=0.9,*/*;g=0.8
Accept-Language: en-us,en;q=0.5

Accept-Charset: 1SO-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Content-Type: text/plain; charset=utf-8

X-JSON-RPC: getProduct

Referer: http://192.168.1.56/

Content-length: 54

Pragma: no-cache

Cache-Control: no-cache

{"id":2,"method":"getProduct”,"params":{ "id" : "--"}}

In this case we injected hyphens (--) in the parameter value for id in JSON. While doing
automated fuzzing one needs to identify these points and values should be injected in
JSON or any other stream. Another approach is to identify it by seeing its structure or
relevant JavaScript code.

We got following response

HTTP/1.1 200 OK

Date: Tue, 02 Sep 2008 10:05:30 GMT
Server: Microsoft-11S/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 2.0.50727
Cache-Control: no-cache

Blueinfy Solutions Pvt. Ltd 3



Pragma: no-cache

Expires: -1

Content-Type: text/plain; charset=utf-8
Content-Length: 153

{"id":2,"error":{"name":"JSONRPCError","message":"Incorrect syntax near
'='""errors":[{"name":"SqglException”,"message":"Incorrect syntax near '="."}]1}}

Definite SQL injection point or vulnerability is identified over here. This is one of the
places where an attacker can try different pay loads to gain unauthorized access. It is
interesting to see that it is not 500 but 200 in which JSON response will come back and
no point in looking for 500 signature blocks for vulnerability detection in many Web 2.0
centric cases.

Following is a list of fuzzing points for Web 2.0 application to discover SQL injections:

Public functions of SOAP based Web Services
XML-RPC services’ entry points

AMF remoting calls

JSON parameters along with RPC

Other type of JS Objects like Array or customized object
Customized APIs and library structures

Conclusion

Discovery phase for Web 2.0 applications need better approach compared to traditional.
One needs to dig through several components and scripts to identify backend resources.
During our recent work against Web 2.0 applications we were able to identify few SQL
injections over Web Services and JSON streams. As new applications are moving
towards Web 2.0 space these sort techniques are required to be deployed and some
innovative methodologies are needed as well along with tools.

About Blueinfy

Blueinfy specializes in application security. We provide services to evaluate and improve
the overall security posture of web applications and websites deployed world wide by
products, consulting and training services. We continually strive to ensure complete
customer satisfaction with respect to the security of their application assets, and to
achieve this through state-of-the-art know-how built by enhancing methodologies,
evolving tools and researching technologies.

Web: http://www.blueinfy.com Email: contact@blueinfy.com

***This paper is authored by Blueinfy’s research and consulting team.***

Blueinfy Solutions Pvt. Ltd 4



